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Abstract:  We investigate the design of taper structures for coupling to
dow-light modes of various photonic-crystal waveguides while taking into
account parameter uncertainties inherent in practical fabrication. Our short-
length (11 periods) robust tapers designed for A = 1.55um and a slow-light
group velocity of ¢/34 have atotal loss of < 20dB even in the presence of
nanometer-scale surface roughness, which outperform the corresponding
non-robust designs by an order of magnitude. We discover a posteriori that
the robust designs have smooth profiles that can be parameterized by a
few-term (intrinsically smooth) sine series which helps the optimization to
further boost the performance slightly. We ground these numerical results
in an analytical foundation by deriving the scaling relationships between
taper length, taper smoothness, and group velocity with the help of an exact
equivalence with Fourier analysis.

© 2012 Optical Society of America

OCIS codes: (050.1755) Computational electromagnetic methods; (130.0250) Optoelec-
tronics; (130.5296) Photonic crystal waveguides, (250.5300) Photonic integrated circuits,
(350.4238) Nanophotonics and photonic crystals.

References and links

1

2.

3.

S. Cox and D. Dobson, “Maximizing band gaps in two-dimensional photonic crystals,” SIAM J. Appl. Math 59,
2108-2120 (1999).

S. Cox and D. Dobson, “Band structure optimization of two-dimensional photonic crystalsin H-polarization,” J.
Comp. Physics 158, 214224 (2000).

L. Frandsen, A. Harpoth, P. Borel, M. Kristensen, and J. Jensen, “Broadband photonic crystal waveguide 60°
bend obtained utilizing topology optimization,” Opt. Express 12, 5916-5921 (2004).

P.Borel, A. Harpoth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and
fabrication of photonic crystal structures,” Opt. Express 12, 1996-2001 (2004).

D. Dobson and F. Santosa, “Optimal localization of eigenfunctions in an inhomogeneous medium,” SIAM J.
Appl. Math 64, 762—774 (2004).

W. Frei, D. Tortorelli, and H. Johnson, “Topology optimization of a photonic crystal waveguide termination to
maximize directional emission,” Appl. Phys. Letters 86(111114) (2005).

A. H&kansson, J. Sanchez-Dehesa, and L. Sanchis, “Inverse design of photonic crystal devices,” |EEE J. Selected
Areas in Communications 23, 1365-1371 (2005).

C. Kao, S. Osher, and E. Yablonovitch, “Maximizing band gaps in two-dimensional photonic crystals,” Appl.
Phys. B 81, 235-244 (2005).

#171622 - $15.00 USD  Received 29 Jun 2012; revised 24 Aug 2012; accepted 25 Aug 2012; published 5 Sep 2012
(C) 2012 OSA 10 September 2012 / Vol. 20, No. 19/ OPTICS EXPRESS 21558



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

35.

36.

37.

38.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. Jensen, O. Sigmund, P. Borel, M. Kris-
tensen, and K. Asakawa, “Topology optimised photonic crystal waveguide intersections with high-transmittance
and low crosstalk,” Elec. Letters 42, 1031-1033 (2006).

W. Frei, D. Tortorelli, and H. Johnson, “Geometry projection method for optimizing photonic nanostructures,”
Opt. Letters 32, 77-79 (2007).

L. He, C.-Y. Kao, and S. Osher, “Incorporating topological derivatives into shape derivatives based level set
methods,” J. Comp. Physics 225, 891-909 (2007).

J. Riishede and O. Sigmund, “Inverse design of dispersion compensating optical fiber using topology optimiza-
tion,” J. Opt. Soc. Am. B 25, 88-97 (2008).

O. Sigmund and K. Hougaard, “Geometric properties of optima photonic crystals” Phys. Rev. Letters
100(153904) (2008).

D. Dobson and L. Simeonova, “Optimization of periodic composite structures for sub-wavelength focusing,”
Appl. Math. Optim. 60, 133-150 (2009).

R. Matze, J. Jensen, and O. Sigmund, “ Systematic design of slow-light photonic waveguides,” J. Opt. Soc. Am. B
28, 2374-2382 (2011).

Y. Elesin, B. Lazarov, J. Jensen, and O. Sigmund, “Design of robust and efficient photonic switches using topol -
ogy optimization,” Photon. and Nanostruc. 10, 153-165 (2012).

T. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Letters 26,
1102-1104 (2001).

A. Mekisand J. Joannopoul os, “ Tapered couplers for efficient interfacing between dielectric and photonic crystal
waveguides,” J. Lightwave Tech. 19(6), 861-865 (2001).

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out of plane losses and adiabatic modal conversion,”
Appl. Phys. Letters 78, 1466-1468 (2001).

P. Sanchis, J. Marti, J. Blasco, A. Martinez, and A. Garcia, “Mode matching technique for highly efficient cou-
pling between dielectric waveguides and planar photonic crystal circuits,” Opt. Express 10, 1391-1397 (2002).
A. Talneau, P. Lalanne, M. Agio, and C. Soukoulis, “Low-reflection photonic-crystal taper for efficient coupling
between guide sections of arbitrary widths,” Opt. Letters 27, 1522-1524 (2002).

P. Bienstman, S. Assefa, S. Johnson, J. Joannopoulos, G. Petrich, and L. Kolodzigjski, “ Taper structures for
coupling into photonic crystal slab waveguides,” J. Opt. Soc. Am. B 20, 1817-1821 (2003).

N. Moll and G.-L. Bona, “Comparison of three-dimensional photonic crystal slab waveguides with two-
dimensional photonic crystal waveguides: efficient butt coupling into these photonic crystal waveguides,” J. Appl.
Physics 93, 4986-4991 (2003).

P. Sanchis, J. Garcia, A. Martinez, F. Cuesta, A. Griol, and J. Marti, “Analysis of adiabatic coupling between pho-
tonic crystal single-line-defect and coupled-resonator optical waveguides,” Opt. Letters 28, 1903-1905 (2003).
E. Miyai and S. Noda, “Structural dependence of coupling between a two-dimensional photonic crystal waveg-
uide and awire waveguide,” J. Opt. Soc. Am. B 21, 67—72 (2004).

P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic crystals,”
|EEE J. Quant. Elec. 40, 541-550 (2004).

E. Khoo, A. Liu, and J. Wu, “Nonuniform photonic crystal taper for high-efficiency mode coupling,” Opt. Express
13, 7748-7759 (2005).

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Experimental results on adia-
batic coupling into SOI photonic crystal coupled-cavity waveguides,” |EEE Photon. Tech. Letters 17, 1199-1201
(2005).

K. Dossou, L. Botten, C. de Sterke, R. McPhedran, A. Asatryan, S. Chen, and J. Brnovic, “Efficient couplers for
photonic crystal waveguides,” Opt. Commun. 265, 207219 (2006).

Y. Vlasov and S. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt.
Letters 31, 50-52 (2006).

J. Hugonin, P. Lalanne, T. White, and T. Krauss, “ Coupling into slow-mode photonic crystal waveguides,” Opt.
L etters 32, 26382640 (2007).

P. Pottier, M. Gnan, and R. D. L. Rue, “Efficient coupling into slow-light photonic crystal channel guides using
photonic crystal tapers,” Opt. Express 15, 6569-6575 (2007).

C. de Sterke, J. Walker, K. Dossou, and L. Botten, “Efficient slow light coupling into photonic crystals,” Opt.
Express 15, 10,984-10,990 (2007).

P. Velha, J. Hugonin, and P. Lalanne, “ Compact and efficient injection of light into band-edge slow-modes,” Opt.
Express 15, 61026112 (2007).

J. Lu, S. Boyd, and J. Vuckovic, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express
19, 10,563-10,570 (2011).

J. Lu and J. Vuckovic, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary
nanophotonic waveguide modes,” Opt. Express 20, 72217236 (2012).

M. Povinelli, S. Johnson, and J. Joannopoulos, “ Slow-light, band-edge waveguides for tunable time delays,” Opt.
Express 13(8), 7145-7159 (2005).

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding The Flow Of Light,

#171622 - $15.00 USD  Received 29 Jun 2012; revised 24 Aug 2012; accepted 25 Aug 2012; published 5 Sep 2012
(C) 2012 OSA 10 September 2012 / Vol. 20, No. 19/ OPTICS EXPRESS 21559



39.

40.

41.

42.
43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

55.
56.
57.
58.
59.
60.

61.

62.

63.

65.

66.

67.
68.

69.

2nd ed. (Princeton Univ. Press, 2008).

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465-473 (2008).

S. Johnson, P. Bienstman, M. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. Joannopoulos, “Adiabatic theorem
and continuous coupl ed-mode theory for efficient taper transitionsin photonic crystals,” Phys. Rev. E 66(066608)
(2002).

G. Taguchi, R. Jugulum, and S. Taguchi, Computer-Based Robust Engineering: Essentials For DFSS (ASQ
Quality Press, 2004).

A.Bentd, L. E. Ghaoui, and A. Nemirovski, Robust Optimization (Princeton University Press, 2009).

A. Mutapcic, S. Boyd, A. Farjadpour, S. Johnson, and Y. Avniel, “ Robust design of slow-light tapersin periodic
waveguides,” Engineering Optimization 41, 365-384 (2009).

D. Bertsimas, O. Nohedani, and K. Teo, “Robust optimization for unconstrained simulation-based problems,”
Oper. Research 58, 161-178 (2010).

F. Wang, J. Jensen, and O. Sigmund, “ Robust topology optimization of photonic crystal waveguides with tailored
dispersion properties,” J. Opt. Soc. Am. B 28, 387—397 (2011).

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELSs using eigenmode expansion
and perfectly matched layers,” Opt. and Quant. Electronics 33, 327—-341 (2001).

T. White, L. Botten, C. de Sterke, K. Dossou, and R. McPhedran, “Efficient slow-light coupling in a photonic
crystal waveguide without transition region,” Opt. Letters 33, 26442646 (2008).

A. Kurs, J. D. Joannopoulos, M. Soljatic, and S. G. Johnson, “Abrupt coupling between strongly dissimilar
waveguides with 100% transmission,” Opt. Express 19, 13,714-13,721 (2011).

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation
pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Letters 85, 14661468 (2004).

J. Maand M. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic
crystal waveguide and an underlying substrate,” Appl. Phys. Letters 97(151102) (2010).

A. Oskooi, P. Favuzzi, Y. Kawakami, and S. Noda, “Tailoring repulsive optical forces in nanophotonic waveg-
uides,” Opt. Letters 36, 46384640 (2011).

Y. Xu, R. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a
coupled-resonator optical waveguide,” JOSA-B 17(387-400) (2000).

M. Soljati¢, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light
enhancement of non-linear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052-2059 (2002).

S. Anderson, A. Shroff, and P. Fauchet, “Slow light with photonic crystals for on-chip optical interconnects,”
Adv. Opt. Technology 2008(293531) (2008).

J. Hastings, M. Lim, J. Goodberlet, and H. Smith, “Optical waveguides with apodized sidewall gratings via
spatial-phase- locked electron-beam lithography,” J. Vac. Sci. Tech. B 20, 2753-2757 (2002).

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-
ridge waveguide with vertical-groove surface grating,” Elec. Letters 40, 804—-805 (2004).

M. Strain and M. Sorel, “Design and fabrication of integrated chirped bragg gratings for on-chip dispersion
control,” |EEE J. Quant. Elec. 46, 774-782 (2010).

G. Strang, Computational Science and Engineering (Welleseley-Cambridge Press, Wellesley MA, 2007).

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, UK, 2004).

M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon
photovoltaic cell front coatings,” Opt. Express 17, 75057518 (2009).

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen,
M. Saljati¢, J. D. Joannopoulos, S. G. Johnson, and |. Celanovic, “Design and global optimization of high-
efficiency thermophotovoltaic systems,” Opt. Express 18, A314-A334 (2010).

S. Fan, P.R. Villeneuve, and J. D. Joannopoulos, “ Theoretical investigation of fabrication-related disorder on the
properties of photonic crystals,” J. Appl. Physics 78, 1415-1418 (1995).

J. Foresi, P. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith,
and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).

S. G. Johnson and J. D. Joannopoul os, “Block-iterative frequency-domain methods for Maxwell’s equationsin a
planewave basis,” Opt. Express 8(3), 173-190 (2001).

J. E. Avron and A. Elgart, “Adiabatic theorem without a gap condition,” Commun. Math. Physics 203, 445-463
(1999).

K. O.Mead and L. M. Delves, “On the convergence rate of generalized Fourier expansions,” IMA J. Appl. Math.
12(3), 247-259 (1973).

J. P. Boyd, Chebyshev And Fourier Spectral Methods, 2nd ed. (Springer, 1989).

A. Oskooi, L. Zhang, Y. Avniel, and S. Johnson, “The failure of perfectly matched layers, and towards their
redemption by adiabatic absorbers,” Opt. Express 16(15), 11,376-11,392 (2008).

S. G. Johnson, M. L. Povinelli, P. Bienstman, M. Skorobogatiy, M. Soljati¢, M. Ibanescu, E. Lidorikis, and
J. D. Joannopoulos, “Coupling, scattering and perturbation theory: semi-analytical analyses of photonic-crystal
waveguides,” in Proc. 2003 5th Intl. Conf. on Transparent Optical Networks and 2nd European Symp. on Pho-
tonic Crystals, vol. 1, pp. 103109 (2003).

#171622 - $15.00 USD  Received 29 Jun 2012; revised 24 Aug 2012; accepted 25 Aug 2012; published 5 Sep 2012
(C) 2012 OSA 10 September 2012 / Vol. 20, No. 19/ OPTICS EXPRESS 21560



70. P Bienstman, “CAMFR: CAvity Modeling FRamework,” Software at http://camfr.sourceforge.net.

71. M. L. Povindli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljati¢, “ Effect of a photonic band gap
on scattering from waveguide disorder,” Appl. Phys. Letters 84, 3639-3641 (2004).

72. S. Assefg, P T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodzigjski, E. P
Ippen, and H. I. Smith, “Guiding 1.5um light in photonic crystals based on dielectric rods,” Appl. Phys. Letters
85, 61106112 (2004).

73. A.Tafloveand S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd
ed. (Artech, Norwood, MA, 2005).

74. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible
free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Communications
181, 687—702 (2010).

75. J. Nocedal and S. Wright, Numerical Optimization (Springer, New York, 1999).

76. A. Conn, N. Gould, and P. Toint, Trust Region Methods (SIAM, Philadelphia, PA, 2000).

1. Introduction

In this paper, we combine large-scal e optimization, an increasingly popular tool in nanophoton-
ics [1-16], with robustness and slow light for the problem of coupling two dissimilar waveg-
uides [17-36]: here, a conventional dielectric waveguide and a periodic waveguide with a
“sow-light” band edge [37—39] where the group velocity approaches zero. We start with the
basic idea of an “adiabatic taper,” a gradua transition that allows wide-bandwidth efficient
coupling [40], and apply optimization (~ 1000 parameters) to design the best “profile” of the
taper rate for a given taper length L, in order to minimize the tradeoff between taper length L
and taper reflectivity R. We obtain < 20dB reflection for L of only a few periods, but we
show that the problem becomes intrinsically more difficult as the group velocity decreases,
and the resulting optimized designs become more and more counterintuitive. A key ideain our
approach is the use of robust optimization [41-45]: optimization that takes into account manu-
facturing uncertainty (e.g. fabrication disorder or errors in the dielectric constant or operating
frequency) by always optimizing the worst-case perturbation to any design. Building on our
previous work [43], we show that traditional “nominal” optimization (i.e., assuming no uncer-
tainty) in photonic devices such as this one can easily lead to disaster: an optimized device that
performswell only because of some delicate interference cancellation, and whose performance
advantage is destroyed even by tiny manufacturing errors. In contrast, the robust optimum de-
grades much more gracefully in the presence of errors: by taking into account the possibility
of errors from the beginning, the robust optimization procedure tends to avoid designs that rely
on delicate cancellations. Rather than expensive simulations of the full Maxwell equations per-
formed during the optimization procedure [18, 20,21, 25,34-36], rapid semi-analytical coupled-
mode theory (CMT) [40] calculations are possible for the taper-design problem [37,43]—these
initially perform small Maxwell simulations only for the periodic building blocks of the taper
to determine the waveguide modes, and subsequently compute asimple integral (equivalent to
aweighted Fourier transform) to find the reflectivity of any given taper profile. CMT trades off
efficiency for generality, but is an indispensable tool to make large-scale optimization feasible
for gradual tapers, especially in 3d. We find that, inthe CM T context, the robustness helpsusin
another way: by comparison to brute-force scattering-matrix cal culations [46], we find that our
designs are also robust to computational approximations. Even with robustness, however, asthe
group velocity becomes lower we show that large-scale (many-parameter) optimization tends
to push towards an artificial solution that exaggerates discrepancies between the optimization
model and the physical circumstances (e.g. modelling errors and/or imperfect uncertainty mod-
els), atendency that can be combatted by building in a posteriori observations about the nature
of therobust optima. In particular, we observe that the robust optimatend to be smooth, slowly-
oscillating shapes that can be parameterized as alinear taper plus atruncated sine serieswith a
few terms, and by using thisinformation a priori, in addition to robust optimization, we obtain
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going from uniform waveguide to periodic waveguide

or

—_—

parameter s =0 or

parameter s = 1
(e.g. s ~ hole radius, flange width, block spacing, ...)

s=1 : e
design s(z/L) | L |
...100s of parameters... s=0
S=g=0' Z=L S = 1

Fig. 1. Schematic taper design problem, with atransition between two waveguides charac-
terized by a dimensionless parameter s € [0,1]. The taper goes from a uniform dielectric
waveguide (s= 0) to a periodic waveguide (s= 1), with 0 < s < 1 describing intermediate
structures (e.g. s~ hole radius, flange width, or block spacing in the structures shown at
right). A taper design (bottom) is a “shape” function s(z/L) (for z € [0,L]) describing a
continuous transition from s(0) = 0 to s(1) = 1. For optimization, we parameterize s by its
values at uniformly spaced points and linearly interpolate in between (bottom |eft).

an improved design at very low group velocities. Although we show analytically that smooth-
ness reduces taper reflections asymptotically for long tapers, the desirability of smoothness for
optimized short tapersis not as apparent, especialy in light of many previous coupler designs
employing abrupt transitions [20, 23, 25, 26, 30, 33, 34,47,48].

The coupling of optical modes from one structure to another is crucia for enabling com-
plex integrated photonic devices. A particular challenge is posed by slow-light waveguides,
which are useful since their low group velocity enhances many types of light-matter in-
teraction [39] as well as enhancing dispersion effects [37]. For example, the slow-light in-
crease of the field intensity boosts the optical force in optomechanical systems [49-51],
and it also enhances nonlinear effects for a variety of applications [39, 52-54]. Many de-
signs have been proposed for coupling dissimilar waveguides (in most cases at moder-
ate group velocities), including designs based on butt-coupling [23, 26], mode-field match-
ing [20, 25, 30, 47], anti-reflection coatings [33, 34], resonant transmission [48], and gradual
taper transitions [17-19, 21, 22, 24, 27-29, 31, 32, 36, 37,40, 43]. Most of these works involved
only asmall number of tunable degrees of freedom, which (combined with the moderate group
velocities) hel ped to avoid the ultra-sensitive nonmanufacturable designsthat tend to arise when
many degrees of freedom are included; hence, they were able to disregard uncertainties during
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the design process. Resonance can be used to couple to slow light, but isintrinsically narrow-
band and relies on a delicate cancellation represented by a forced impedance matching (al-
though, being a single parameter, manufacturing errors could conceivably be compensated by
post-fabrication tuning) [48]. Strong frequency and parameter sensitivity was also encountered
in the optimization of acoupler over many degrees of freedom [7]. To addressasimilar problem
in our earlier work, we introduced one simple way of incorporating robustness by optimizing
the worst-case performance over alarge (+30%) range of rescaled taper lengths for the same
shape [37]. In particular, we designed an adiabatic taper for coupling to a slow-light 3d flanged
waveguide (with a moderately low group velocity of ¢/10) having low reflection (< 20dB),
and optimizing over shapes parameterized by a few parameters (degree-4 polynomials) [37].
However, it is desirable to develop a framework in which more general uncertainties can be
incorporated. To this end, we recently demonstrated a method for designing waveguide tapers
that takes into account uncertainties in the operating frequency and taper shape while using a
large number (hundreds) of free parameters [43]. As a proof of concept, we designed a fixed-
length (30 periods) taper (to periodic 2d blocks) by smoothly varying the air gaps, coupling to
amode at a moderate group velocity of c/4 [43]. Here, we extend that work to a more redlis-
tic waveguide taper (a waveguide with periodic side flanges, which can be gradually extended
while avoiding arbitrarily narrow air gaps), closely analogous to the fabricatable [55-57] 3d
flanged waveguide considered in Ref. 37, but in two dimensions so as to be amenable to brute-
force validation of its performance in the face of fabrication imperfections (surface roughness).
Furthermore, rather than looking at a fixed taper length as in our previous works, we inves-
tigate the central engineering tradeoff in this problem: the tradeoff between performance and
taper length, by comparing separately-optimized structures at different lengths. We go down
to a group velocity of ¢/34, where the taper problem becomes even more challenging (both
physically and in the optimization sense, e.g. we find that low group velocity required more
algorithmic effort to avoid being trapped in poorly-performing local optima, and also requires
more care to maintain the validity of CMT). Finally, we extend the asymptotic analysis of the
adiabatic limit (taper length — o) from our previous works [37, 40] to address the interplay
between taper smoothness, group velocity, and reflection (with the help of an exact equivalence
to Fourier analysis that we derive here).

In a sense, all engineering design is a problem of optimization: choosing some design pa-
rameters p to optimize some objective O(p), possibly subject to some constraints. Large-scale
optimization (sometimes called “inverse design”) is simply optimization in the regime where
there are many parameters, so many that one cannot easily intuit the form of the solution. (With
many parameters, it is crucial that one evaluate the gradient V,O analytically, which can be ef-
ficiently achieved by an adjoint method [58].) There are many a gorithms to solve optimization
problems of many different kinds, but robust optimization is not about the choice of algorithm,
it is about changing the optimization problem. Instead of solving a nominal optimization like
min, O(p), in which the optimization process assumes that O is known exactly with no uncer-
tainties, robust optimization techniques transform the problem to incorporate uncertainties. If
the uncertainties are described as unknown values v in some set 7 (e.g. the error bars of man-
ufacturing variability), then one way to “robustify” the problem is to optimize the worst case,
minp[maxy O(p, V)]. (There are also other possibilities, such as optimizing the average case, but
worst-case optimization benefits from the availability of many practical algorithms[43]. Refer-
ence 45 employed a ssimplified worst-case analysis for a waveguide-design problem, in which
the worst of three designs was optimized.) Most previous work on robust optimization focused
on “convex” optimization problems [59]—essentially, problems with no suboptimal local min-
ima, which can therefore be efficiently solved exactly. However, design problems in optics,
including the taper design problem here, are typically nonconvex: one cannot in general find
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the global optimum (except in the case of small parameter spaces that can be searched exhaus-
tively [60, 61]) and must settle for an approximation (a local optimum). Reference 43 devel-
oped an effective technique to approximately solve non-convex robust optimization problems,
combining approximate pessimization (worst-case analysis) with multi-scenario optimization.
(A somewhat more complicated algorithm, which combined pessimization by gradient ascent
from multiple sample pointsin 7 with optimization by gradient descent along adirection deter-
mined by solving a second-order cone problem, was applied to a microwave scattering problem
by Ref. 44.) Reference 43 also showed the effectiveness of a successive-refinement strategy
(gradually increasing the number of degrees of freedom) to avoid being trapped in poor local
optima. (In fact, we now find that the robustness itself hel psto avoid being trapped in poor local
optima, so much so that it was helpful to artificially enlarge the uncertainty set 7'.)

To set the stage for our remaining paper, we begin by more precisely defining a taper-design
robust-optimization problem (as in Ref. 43), depicted schematically in Fig. 1. We are coupling
auniform dielectric waveguide to a periodic (period a) waveguide, e.g. a dielectric waveguide
pierced by a sequence of holes[38, 62, 63] or with periodic side flanges [55-57]. A continuous
transition from the uniform waveguide (s = 0) to the periodic waveguide (s = 1) is described
by a dimensionless parameter s € [0, 1]; for example, s could be proportional to the hole radius
(if we taper by gradualy increasing the hole radii) or to the flange width (if we gradually
taper the flanges outwards). A taper design is then described by a continuous profile s(z/L),
which characterizes al intermediate structures for z € [0,L]. [This easily generalizes to the
case of multiple taper parameters s,(z/L) that are varied independently, e.g. hole radius and
waveguide width or flange width and height, but we found that a single taper parameter sufficed
to obtain good performance.] Aswe review below (and have argued elsewhere [37,40,43]), the
taper losses are usually dominated by reflections (as opposed to radiative scattering), especially
for slow light, so it is sufficient for us to minimize the reflectivity R[s(z/L),v,L], which is a
functional of both the taper shape s(z/L) and a vector v of small uncertainties (in some set %),
for a given design length L. For example, the uncertainties v could include (as components)
some uncertainty Aw in the operating frequency, imperfections As(z/L) in the shape, and/or
uncertainty AL in the taper length. As described above, the robust design problem is then to
minimize the worst-case reflection, a“minimax” problem:

Rmin(L) = minmaxR{s, v, L], @
where . is some set of allowed taper shapes. To begin with we parameterize s(z/L) by its
values s(n/N) € [0,1] at N equally spaced points n, with s(0) = 0 and s(1) = 1, and then lin-
early interpolate s between these points as shown in Fig. 1. (This can be thought of as a “tent
function” basis [58].) We also constrain the slope | (z/L)| < 5—without some constraint on
the smoothness of s, the optimization straystoo far outside the bounds of validity of CMT and
numerical difficulties arise. At the end of the paper, we also consider an alternative parameteri-
zation s(z) = z/L + (sine series), with alinear constraint to enforce s € [0, 1]. By the adiabatic
theorem [40], lim__,.. R[s(z/L),0,L] = 0 (in the absence of surface roughness or other uncer-
tainties that cause scattering), but the goal of optimization is to determine the best tradeoff
curve Ryin(L) (with adifferent optimal shape sfor each L).

2. Analytical and computational methods

There are two computational challenges:. first, solving Maxwell’s equations to obtain R for
any given s, v, and L; and second, solving the optimization problem (1) for Rnin. These two
questions are related because a very efficient method to compute R is desirable in order to
rapidly explore alarge parameter space (s, v, L) during optimization. To address this challenge,
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we first review CMT and its application as a numerical method, and also discuss its analytical
implications for the asymptotic properties of gradual tapers. We also compare CMT with more
“brute-force” simulation algorithms, which are used both for validation of CMT and for post-
optimization evaluation of our designs in the face of disorder. Finally, we briefly review the
optimization algorithm, which was developed in detail in our previous work [43].

2.1. Coupled-mode theory and the adiabatic limit

In order to compute R, as in our previous work [37, 43] we employ the coupled-mode the-
ory (CMT) developed in Ref. 40. The basic idea is to expand the field in the waveguide
in the basis of the Bloch eigenmodes of periodic waveguides—here, the waveguide modes
corresponding to the intermediate structure s(z/L) is used to expand the fields at that z. Ab-
stractly, if the electromagnetic field is y(z) (with xy coordinates omitted), we write y(z) =
SnCn(2)wn(z) expli [*Bn(Z)dZ], where the yi(z) are the Bloch eigenmodes at z, 3, is the cor-
responding propagation constant (or wavevector), and ¢, is the expansion coefficient. When
this expansion is substituted into the Maxwell equations, a set of coupled ODEs for c,(2) is
obtained (the “ coupled-mode” or “coupled-wave” equations) [40]. In the L — < limit, the adi-
abatic theorem states that the expansion coefficients are constants [c,(z) — ¢n(0)], while for a
finite L we can apply a slowly varying envel ope approximation (SVEA) to compute the correc-
tionsto this limit. In the SVEA, assuming we start with a single incident mode ¢n(0) = no, t0
lowest order in the rate of change one finds that the reflected-wave amplitude ¢; is[40]:

S(U)] 1 ¢ aps
o = / dus (u Aﬁk[s(u)]étf ABs(u)]du @)

Here, M(s) is a coupling matrix element (an overlap integral (yi|---|y;)) of the incident and
reflected fields with the geometric variation, and AB(s) = B (s) — Bi(s) + 2rnk/a(s) isaphase-
mismatch factor between the incident (i) and reflected (r) modes summed over al Brillouin
zones (all integersk). Inthis paper, the My and Ay parameters were obtained from aplanewave-
expansion method [64]. In practice, the sum over k converges rapidly [40] so we only included
|k| < 3. The reflected power is then R = |c;|?. Computation of the gradient Vs, is described
in Ref. 43. (It isimportant to contrast this Bloch-mode expansion with older coupled-wave ap-
proaches that expand in the basis of uniform waveguide modes of each cross-section, which is
ineffective asasemi-analytical technique for strongly periodic structuresin which the cross sec-
tion israpidly varying [40]. A Bloch-mode basis, on the other hand, experiences no scattering
at all from the periodicity itself—it only undergoes intermodal scattering when the periodicity
is broken by the taper, and is therefore a rapidly converging basis for gradua taper transitions
of periodic structures, including structures whose unit cells contain discontinuities such as air
gaps [40].)

In principle, the total loss (1 — transmission) includes radiative scattering in addition to re-
flection (assuming single-mode waveguides so that there is no other inter-modal reflection).
However, the reflected power tends to dominate [40], especially for slow-light modes (low
group velocity vg = dw/df3), as can be argued from (2) [37]. First, at a quadratic band edgein
aperiodic waveguide, A ~ vy (for the k term corresponding to modes 3 = /a4 A coupledin
adjacent Brillouin zones)—this both decreases the denominator in (2) and decreases the phase
mismatch. Second, the modes in coupled-mode theory are normalized to unit power [40], and
hence the fields scale ~ 1/, /Vg and there is an additional 1/vq factor in M for coupling slow-
light incident and reflected modes, versus only a 1/, Vg factor in M for coupling slow-light
incident to non-slow scattered waves [37].

In order to understand the validity of CMT and the precise scaling with group velocity,
we must have a better understanding of the adiabatic limit. A particularly elegant approach
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is to make a change of variables to transform (2) into a Fourier integral, at which point al of
the well-known properties of Fourier transforms can be invoked. Omit the k summation for
simplicity (e.g. focus on the dominant k term). The key point is that one generaly (with rare
exceptions [65]) considers adiabatic transitions in which the incident and scattered modes are
never degenerate in 3, so that Af is always nonzero. This is certainly true for the case of
reflections. The function x(u) = [5'ABk[S(U/)]dU’ is therefore monotonic, and one can invert it
to u(x) and change variables u «+» x. We obtain precisely a Fourier integral:

[T Mi[s(u(x))] jix
C = /_Ndxs’(u(x))me”- , 3)

where we are free to extend the integration range since ' = 0 outside the taper. As long as
sis continuous, so that ' contains no delta functions, this — O for L — oo because L is sim-
ply the “frequency” of a convergent Fourier transform. Furthermore, the rate at which ¢, — 0
with L iswell known in Fourier theory to depend on the smoothness of the integrand [66, 67],
which in this case is determined by the smoothness of § (including the taper endpoints). For
example, if sis a simple linear taper with discontinuous slope s at the taper ends, then the
Fourier transform (due to the discontinuity) scalesas ¢; ~ 1/L, hence thereflectionsgo as 1/1.2
asymptotically [37,40]. More generally, if s has endpoint discontinuities in its ¢-th derivative
and is otherwise smooth, then |c;|? ~ 1/L% [66,67] (we previously analyzed arelated point in
the context of PML absorbing boundaries, where the Fourier analogy was not so exact [68]).
Similarly, the group-velocity scaling depends on the smoothness of s. For the case of alinear
taper, or any taper with discontinuous s, thereflection goes as|c; |2 ~ [M/AB[?/L? ~ 1/(Lvg)?,
or equivalently we must have L ~ 1/vg to obtain afixed reflection [37,69]. For smoother tapers,
the convergence analysis of the Fourier integral involvesintegration by partsto apply additional
derivativesto suntil the discontinuity isreached [66-68], which gives additional du/dx=1/Af3
factors by the chain rule. Hence, the generalization to a discontinuity in the ¢-th derivativeis a
scaling [cr |2 ~ [M/AB|2/(LAB)? ~ (1/vg)/(Lvg)¥, or L ~ 1/vg /" The consequence of this
scaling is that a tradeoff of taper length with group velocity becomes (asymptotically) better
for smoother tapers, approaching L ~ 1/vg, and so smoothness—eliminating high-frequency
Fourier components—of the taper shape may be especialy important for slow light. On the
other hand, the optimum taper shape is very different for any given finite L than it is in the
asymptotic limit—the rule is not simply “smoother is better,” because smoother tapers aso
tend to require alarger L to attain the asymptotic 1/L% behavior [68]. Optimization is required
to determine the best shape for any finite L, especially for short L far from the asymptotic
regime.

2.2. Brute-force numerics and validation

CMT, when evaluated to lowest-order asin (2), is asymptotically exact in the limit of gradual
tapers, but is only an approximation for the rapid taper transitions that are the goal of opti-
mization because we are neglecting multiple-scattering effects. (Note that our expansion basis
is that of Bloch modes [40], so multiple-scattering effects of the periodicity itself are treated
exactly; it is only multiple scattering between Bloch modes due to the taper transition that
are neglected.) Fortunately, the optimization will also tend to drive the taper shape precisely
into the small-|c;| regime where CMT is accurate. However, to check the performance of our
taper designs, we supplement the CMT with a brute-force numerical calculation based on an
eigenmode-expansi on scattering-matrix method (also called RCWA, the rigorous coupled-wave
approximation) viathe free CAMFR package [70]. CAMFR isaso used as afina check of the
robustness of the designs to fabrication errors, sincein that method we can incorporate random
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surface roughness in the taper (which requires a different coupled-mode theory technique to de-
scribe it accurately [71]). In general, we found that the robust-optimi zation approach produced
designs that were robust even in the face of errors in the computational method, whereas we
show below that nominal optimization produces designs whose performance is destroyed even
by slight changes in the simulation accuracy.

Figure 2(a) shows alinear (forward and backward, double) taper between a uniform waveg-
uide and a sequence of dielectric blocks (e = 12), for relatively “fast” light (vq ~ ¢/4) in the
TM (out-of-plane E) polarization, with excellent agreement between CAMFR and CMT except
for very short tapers with reflections > 10%. This structure is convenient for validation [40,43]
because its piecewise-constant cross-sections are particularly efficient in CAMFR and allow
us to study very long and gradual tapers, but it is relatively difficult to realize experimentally
because its tapers involve many extremely narrow air gaps (that must be abruptly merged in
practice once the limits of lithographic resolution are reached [72]). In Fig. 2(b), we instead
consider a (TE-polarized) case of a waveguide with lateral flanges [55-57] operating close to
the band edge where the group velocity is ~ ¢/34. This sort of geometry is experimentally
attractive because a gradual taper involves no arbitrarily narrow features, and the TE polariza-
tion tranglates into a TE-like polarization in three dimensions that can be confined by much
thinner structures than TM-like polarizations [38]. In this case, however the CMT only begins
to converge to the CAMFR results (which we also check against a third numerical method,
FDTD [73,74]) for very long tapers, but thisis not unexpected. Because of the slow light used
here, the reflections are very large (~ 40%), and the first-order approximation in our CMT is
expected to be inaccurate. For slow light, as explained above, a smple linear taper is a poor
choice even if the taper can be made quite long: although CMT predicts an asymptotic 1/L?
scaling of the reflection, we would need to go to much larger lengths to observe this scaling for
dow light. [Unfortunately, CAMFR is far more expensive for the taper in (b) than for the taper
in (), due to the nonconstant cross-sections in the former, while FDTD is a so too expensive to
simulate a very gradual taper.] As we show below, however, optimizing the CMT in the slow-
light case nevertheless yields a (much more counterintuitive) design that performs well evenin
the brute-force CAMFR check.

2.3. Robust-optimization algorithm

The basic optimization algorithm, as described in Ref. 43, is sequential linear programming
(SLP) with a trust-region constraint [75, 76]. In order to implement the robustness [the inner
maxy of (1)], the method uses the gradient VR to estimate the worst-case v parameters for the
current shape s (and in fact accumulates a memory of ten such worst cases over the course of
the optimization that it uses for subsequent steps), and thus transforms the continuous max,
into a discrete “multi-scenario” maximization over afinite set of worst-case candidates [43].

Reference 43 a so introduced a technique of “successive refinement”: we gradually increase
the number of degrees of freedom (from 1 to 1024, roughly doubling in each step), using the
optimized coarser structures as starting points for optimization of the finer structures. This pro-
cedure has two benefits: it both increases the robustness of the design (by making it more robust
to coarsening the discretization of s) and also tends to avoid becoming immediately trapped in
local minima (although we cannot guarantee that the final result is a global minimum).

We found that the precise details of the set 7 of uncertainties makes relatively little
difference—putting in any robustness tends to force the optimization to avoid delicate can-
cellations that would be sensitive to any errors. However, some care is required in the case of
dow light because of the presence of a band edge beyond which the guided mode no longer
exists. As the band edge is approached, any uncertainty Aw in the operating frequency must
be reduced to avoid going past this band edge. In practice, if afabrication error were to shift
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Fig. 2. Comparison of coupled-mode theory (CMT) calculation of reflection coefficient
from double taper (from uniform to periodic to uniform) structure, using a simple lin-
ear profile s(u) = u, with two other brute-force numerical methods, scattering matrix
(CAMFR [46]) and finite-difference time-domain (FDTD [74]). () 2d period a 0.4a x 0.4a
blocks example (top left) with TM operating mode at vig = ¢/4 [40,43]. CMT and CAMFR
agree well. (b) 2d period-a flanged waveguide (inner width a, outer width 2a, 50% duty
cycle) with TE operating mode at vg = ¢/34, adapted from Ref. 37 (top right). For such
slow light, the scattering from a short linear taper istoo large for CMT to be valid, but op-
timization of the taper shape will drive the reflections low enough for the CMT calculation
to be suitable.

the band edge dlightly, an application requiring slow light would have to either adjust the op-
erating frequency accordingly or perform post-fabrication tuning (e.g. by thermally changing
the refractive index) in order to keep vy fixed. Therefore, to reflect this situation of fixed vy,
we did not include any uncertainty in . However, in order to represent the possibility of er-
ror in the phase velocity (/) that could result from such post-fabrication tuning, we instead
included an uncertainty AL in the taper length L [equivalent to an overall shift in § by (2)].
Since d 3 /dw diverges as vy — 0, weincreased the uncertainty in L (and hencein f8) aswe de-
creased vg—failing to do this resulted in designs that were overly sensitive to fabrication errors
in our simulations. Furthermore, we found that decreasing vy made the optimization increas-
ingly susceptible to being trapped in poor local minima—intuitively, theincreased reflectionsin
the slow-light regime also increase the number of opportunities for delicate cancellations—and
increasing AL helped to combat this tendency. We also included random perturbationsin s (at
each discretized s point), but we found that this made little difference in the resulting design
once AL was sufficiently large.

3. Results

We now discuss the results of optimizing and simulating taper designs for the two different
waveguides of Fig. 2, considering both slow light and moderate group velocities, for both nom-
ina (mingR) and robust (minsmax, R optimization), with and without introducing “fabrication
disorder” (surface roughness) in the simulation (after optimizing).

3.1. Periodic blocks

To begin with, we return to the periodic (period a) sequence of 0.4a x 0.4a blocks (dielectric
constant € = 12 in air) from Fig. 2(a) that we studied in Ref. 43, operating at the same moderate
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Fig. 3. Optimization results for taper structure of square blocks (operating TM mode with
vg = ¢/4) from Fig. 2(a), with block spacing as the taper variable (top: linear tapers). (a)
Performance of three tapers (linear in green, nominal optimum in blue, and robust optimum
in red, with the optimizations performed independently at each length L) computed using
a brute-force scattering-matrix method (CAMFR [46]) (with no disorder introduced). (b)
Performance of nominal taper (optimized independently at each taper length) computed us-
ing two different methods (CMT and CAMFR)—the large disparity is due to the nominal
optimum relying on a delicate interference cancellation that is destroyed even by the slight
numerical differences between the two techniques. (¢) Performance of linear, nominal, and
robust tapers designed at L = 50a and then rescaled to other taper lengths: the nominal
optimum relies on a delicate cancellation that only works closeto L = 50a. Inset compares
CMT and CAMFR for the L = 20a design rescaled to different lengths, and illustrates that
the two approaches agree everywhere except at L = 20a, where there is a delicate interfer-
ence cancellation that is inherently irreproducible (non-robust), and at small L where the
reflection exceeds 10% (causing CMT to break down). (d) Nominal and robust taper pro-
files s(u) designed at L = 50a: the nominal design is only dlightly different from a linear
taper, with the slight changes (inset) sufficient to create a delicate reflection cancellation.
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group velocity of ¢/4 and coupled to a uniform waveguide of width 0.4a, which isa convenient
test problem because of the ease of comparison with brute-force CAMFR simulation. Unlike
our previous work, however, we now perform the optimization of s separately for every taper
length L € [1,100]a, in order to examine the tradeoff of optimal Ry, with L. We then simulate
each of the resulting taper designsin CAMFR in order to verify their performance.

The results are shown in Fig. 3(a), and exhibit a surprising phenomenon: even when no
disorder (no roughness) isintroduced into the scattering-matrix (CAMFR) calculation, so that
in principleit should be modeling exactly the same system asthe CMT cal culations used during
optimization, the nominal optimum exhibits worse performance than the robust optimum (and
both are better than a simple linear taper). Mathematically, one would expect that the nominal
optimum should always perform at least as well as the robust optimum when the disorder is set
to zero, simply because maxy R[s,v] > R[s, 0]. The reason for the behavior in Fig. 3(a) issimple,
however: the nominal optimum relies on such a delicate cancellation effect that even the slight
differencein simulation accuracy between CAMFR and CMT (both will have simulation errors,
but the errorswill be different) is sufficient to radically degrade the performance of the nominal
optimum, while the robust optimum still performs well. As shown below, when the nominal
and robust optima are evaluated in CMT, the nominal performance isindeed slightly better.

This discretization-error degradation in the nominal optimum can be seenin Fig. 3(b), which
comparesthe CMT and CAMFR cal culations for the nominal optimum at each L. For very short
tapers, they make comparable predictions, but once the taper is about 10a in length the opti-
mization is able to engineer a delicate cancellation that causesthe CMT reflections to suddenly
drop by four orders of magnitude (at which point they become limited by numerical errors
and cease to improve further). Even the dlight difference in discretization error induced by the
switch from CMT to CAMFR, however, is enough to destroy this cancellation. (In our previous
work, we showed for this structure that the robust optimum remained an order of magnitude
better than the nominal optimum even after additional disorder isintentionally introduced into
the CAMFR calculation [43]; we consider such disorder in the next section.) The agreement of
CMT and CAMFR everywhere except at the point of this delicate cancellation is demonstrated
below, using the inset of Fig. 3(c).

Another viewpoint on this delicate cancellation is shown in Fig. 3(c), which considers the
design s for L = 50a, but then plots the performance of the same taper shape s(z/L) when it
is rescaled to other lengths L. The nominal optimum performs well only at the design length
of L = 50a, and its performance immediately degrades to little better than alinear taper shape
(s(u) = u) assoon as it is rescaled to a different L—thisis a signature of a delicate destructive
cancellation in the reflected wave that the nominal optimization forced to occur at L = 50a.
The inset compares CMT and CAMFR for a rescaled L = 20a design, and shows that the
two agree except at L = 20a where the non-robust cancellation occurs, which is destroyed by
slight differencesin discretization error as discussed above. |n contrast, the robust optimum still
performswell even when sisrescaled to lengthsL very different from the L where the shape was
designed—the robust optimum does not rely on a delicate cancellation that is easily destroyed.
(Asexpected, the nominal optimum at L = 50aisindeed slightly better than the robust optimum
at that L, when the two are evaluated in CM T with no disorder.) The corresponding taper shapes
sare shown in Fig. 3(d): while the robust optimum is arelatively smooth transition that flattens
at the ends (reducing the s’ discontinuities of a linear taper as might be expected from the
asymptotic analysis), the nominal optimum is nearly identical to alinear taper, only deviating
by a dlight amount (inset) that is apparently tuned to force a reflection cancellation at L = 50a.

Finally, we should comment on one other interesting feature of Fig. 3(a): for the robust
optimum, the reflections appear to decrease exponentially with L until reaching a*noise floor”
around 10~ imposed by numerical accuracy limitations. An exponential tradeoff of reflection
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Fig. 4. Optimization results for taper from uniform to flanged waveguide (operating TE
mode with vy = ¢/6) from Fig. 2(b), with flange (outer) width as the taper variable (top:
linear tapers). (a) Performance of three tapers (linear in green, nomina optimum in blue,
and robust optimum in red, with the optimizations performed independently at each length
L) computed using a brute-force scattering-matrix method (CAMFR [46]), where surface
roughness (+10~3a every 0.01a) was introduced, averaged over 50 structures. The robust
optimum maintains good (~ 30 dB) performance even in the presence of disorder, whereas
the nominal optimum is greatly degraded. (b) Nominal and robust taper profiles designed
at L = 13a (vertical axis exaggerated for clarity): the nomina design includes fine cusps
(circled) absent from the robust design, whose apparent function is to introduce reflection
cancellations (which are spoiled by disorder).

with length is the ideal situation that would be attained asymptotically for an analytic taper
shape (such as s(u) = tanh(u)/2+ 1/2), due to the exponential convergence of the Fourier
transforms of such analytic functions [67, 68], but this requires the taper to have an infinitely
long “tail”, and in any case only applies asymptotically for large L. In contrast, optimization
seems to attain a similar ideal tradeoff even for small L, even for finite-length tapers, abeit by
changing the taper shape as afunction of L. (Whereas the linear and nominal tapers show 1/L.2
scaling.)

3.2. Periodic flanges

Next, we consider taper designs to couple to a waveguide with period-a dielectric (e = 12)
flanges in air, as in Fig. 2(b): the flanges occupy 50% of each period, and extend to an outer
diameter (flange width) of 2a from an inner diameter of a (matching the uniform waveguide).
Again, we optimize separately at each L, in this case for L € [11,20]a (shorter than in the
previous section, both for computational tractability in brute force verification and al so because
short tapers are more practical).

To start with, in Fig. 4, we operate at a moderate group velocity ¢/6, at a frequency ~ 1%
bel ow the band edge of the fundamental mode. After optimization, we then simulated the result-
ing structuresin CAMFR, but modified to include disorder: uniform random surface roughness
with amplitude € [-10~2,10~%]a (corresponding to ~ nm-scale surface roughness for opera-
tionat A = 1.55um) added to each dlice (“pixel”) of thickness 0.01a of the taper. Each result
in Fig. 4(a) isthe reflection averaged over 50 realizations of surface roughness. The robust op-
timum is more than an order of magnitude better in performance than the nominal optimum—
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again, the nominal optimum is better in the CMT but relies on delicate cancellations that are
destroyed by the surface roughness, although the nominal optimum is still dightly better than
asimple linear taper. The robust design has reflections of ~ 30 dB for a taper only L = 11a
in length. The reflection improves for longer lengths, but only slowly, and eventually starts to
become worse—the reason is that there is a tradeoff introduced by the surface roughness, in
that longer tapers are more gradual but also accumulate roughness-induced reflections over a
longer length, and eventually the latter effect dominates. The nominal and robust designs for
L = 13a are shown in Fig. 4(b); note that the vertical axisis exaggerated for clarity. The robust
S(z/L) is afairly smooth taper transition, exhibits some oscillatory behavior that seems hard
to guess a priori (and s will become even more counter-intuitive when the group velocity is
decreased below). The nominal optimum is even more strange, with some fine cusps appearing
in the first few taper flanges that almost certainly create reflections, abeit in such away asto
exactly cancel other reflections (e.g. from the taper ends) in the absence of disorder.

Next, we move to a more challenging problem: coupling to the same structure, but at a
frequency only 0.01% below the band edge of the fundamental mode, operating at a group ve-
locity of ¢/34. In this case, a simple linear taper exhibits > 30% reflections for a taper length
L = 20a. In Fig. 5(a), we show the CAMFR simulations of the optimized designs at each L,
again modifying the structures to include surface roughness. The robust optimum here exhibits
reflections < 20 dB, more than an order of magnitude better than the nominal optimum design,
which is again only dlightly better than a naive linear taper. The robust optimum, in fact, has
adip < 40 dB initsreflections at L € [13,15]a, apparently due to some destructive cancella-
tion, but the dip disappearsin Fig. 5(b) if we examine the total loss (1 — transmission) instead
of just the reflections (which still dominate the loss for most L). Note that the losses again
can be seen to increase with L, an effect of the increased scattering from roughness along a
longer length. In order to obtain the good performance for the robust taper, we found that we
needed to increase the amount of uncertainty AL in the optimization processto arelatively large
value (3a), apparently to avoid being trapped in local minima. In fact, the nominal optimization
seemed to immediately become trapped in arelatively poor solution, even for the CMT with
no uncertainty—as shown in Fig. 5(c), the nomina optimum achieves > 20 dB reflections in
the CMT, a performance that is destroyed when switching to CAMFR even with no surface
roughness (due to discretization effects alone).

The nominal and robust optimum shapes s(u) for ¢/34 are shown in the lower-left and top-
middle panels of Fig. 6 (again with the vertical axisenlarged for clarity). The nominal optimum
has even stronger cusps than in the c/6 velocity case, suggesting even more reliance on cancel-
lations of strong interior reflections. However, even the robust optimum is highly oscillatory,
with oscillations even within a single flange. Despite its good performance in the simulations
of Fig. 5, this led us to wonder whether the oscillatory shape was somehow an artifact of the
choice of parameterization of s. That is, isthismerely alocal minimum that we were trapped in
as aconsequence of discretizing sinto piecewise linear (non-smooth) segments (tent functions)
and gradually refining? To investigate this question, we repeated the robust optimization with
an entirely different parameterization: s(u) = u+ (sine series), where the sine series enforces
the s(0) = 0 and s(1) = 1 boundary conditions. (The 0 < s < 1 boundary conditions were im-
posed explicitly at 1000 pointsin u, which takes the form of asimple linear constraint added to
the linear-programming steps.) Successive refinement was performed by repeatedly doubling
the number of termsin the sine series (4, 16, 32, 64), setting the new termsto zero asthe starting
point for optimization. The resulting robust sine-series optimaare shown in Fig. 6 (lower-right),
and are clearly converging towards the same oscillatory robust optimum. The 64-term sine se-
ries s(u) is superimposed on the original robust optimum in the top-middle panel, and can be
seen to reproduce even many of the fine features within each flange.
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Fig. 5. Optimization results for taper from uniform to flanged slow-light waveguide (op-
erating TE mode with vg = ¢/34) with flange (outer) width as the taper variable (top:
linear tapers). (a) Performance of three tapers (linear in green, nominal in blue, and ro-
bust in red, with the optimizations performed independently at each length) computed
using a brute-force scattering-matrix method (CAMFR [46]), where surface roughness
(-10~3a every 0.01a) was introduced, averaged over 50 structures. (b) Same as (a) but
with 1 — transmission: the inclusion of radiative scattering |oss eliminates the optimization-
created dip (cancellation) in the reflection losses from (a). Asin Fig. 4, the robust optimum
greatly outperforms the nominal optimum in the presence of disorder. (c) Even without
disorder, the nominal optimum performs poorly in CAMFR compared to CMT: the dlight
differences in ssimulation accuracy are enough to spoil the nomina optimum. (d) Same
as (a) but with robust optimization using the original (1024-point) piecewise-linear (“tent
function”) parameterization (red sguares) compared to robust optimization using a sine-
series parameterization (cyan) with 4, 16, and 64 terms:. the latter is converging towards
similar performance as the former, and towards similar structures as seen in Fig. 6, so the
robust optimum isnot merely alocal minimum obtained as a byproduct of the discretization
choice.
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Fig. 6. Linear, nominal, and robust-optimum taper profiles from the slow-light (c/34) op-
timization of Fig. 5, optimized at ataper length L = 13a. Vertical axes are exaggerated for
scale; topmost (black) figure shows the robust taper design to scale. Even the robust design
shows complicated sub-flange oscillations, but similar oscillations are reproduced indepen-
dent of the parameterization of the taper design during optimization. Top middle (red):
robust design using 1024-point linear interpolation (tent functions). Cyan (bottom/right):
robust optimization using sine serieswith successiveincrease of the number of seriesterms.
64-term sine series structure (top right) is similar to tent-function (top middle) structure,
and is superimposed on the latter as a dotted cyan curve. Nominal optimum (lower |eft) has
even more radical oscillations, designed to create delicate reflection cancellations (which
are spoiled by disorder).

The performance of these sine-series designs, shown in Fig. 5(d), is also converging towards
theoriginal robust optimum. Infact, the sine seriesfor some L performs better with only 4 terms
than it does with more terms or with the original tent-function results. It may be, therefore, that
the most counter-intuitive feature of the (tent or 64-sine) robust designs, the intra-flange oscil-
lations, are an artifact not of the parameterization but of the model. That is, the optimization
is driving the design towards a regime in which the accuracy limitations of CMT and/or the
uncertainty model (which cannot accurately capture surface roughness in the context of CMT)
are being exploited to reduce reflections in a way that is partially spoiled in practice (e.g. in
brute-force calculations or in experiments). Although the robust designs still perform well, and
it would not have been feasible to perform optimization of long tapers on a more exact model,
these accuracy limitations can be further compensated for by building in a priori knowledge
of the solution: here, the observation that robust solutions tend to be smooth and slowly oscil-
latory. (In hindsight, a few-term sine-series basis would have been sufficient to parameterize
the robust designsin Fig. 3 and Fig. 4 as well.) Robustness is still required: we have checked
that nominal optimization applied to the sine-series parameterization continues to yield signifi-
cantly worse results. In fact, for the L = 11a 4-term sine-series case where the robust optimum
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performed very well, the nominal optimization isimmediately trapped in alocal minimum and
its reflections stay above 10%.

4. Concluding remarks

We have demonstrated how a rapid, semi-analytical Maxwell solver combined with large-
scale robust optimization can be used to design taper structures for slow-light photonic-crystal
waveguides with performance markedly better than their non-robust counterparts (nominal op-
tima) in the presence of manufacturing variability. In three dimensions, our semi-analytical
CMT approach remains feasible [37], and currently seems to be the only feasible computa-
tional method in 3d for optimizing the gradua tapers required in slow-light applications. We
have shown that robustness, in addition to compensating for manufacturing uncertainty, can
also compensate for limitations of CMT to obtain designs that perform well in practice, even
though CMT requiresincreasingly gradual tapersto be accurate asthe group velocity decreases.
Because we aso find that the robust optima tend to be smooth, slowly-oscillating shapes, by
building this information into the parameterization a priori—parameterizing the shape as a
truncated sine series with a few terms—we find that even better results can sometimes be ob-
tained (although robust optimization is still important). (This finding is reminiscent of—but
does not follow from—our analytical result that smooth shapes, with minimal high-frequency
Fourier components of s, reduce reflections in the asymptotic L — < limit.) As the group ve-
locity becomes lower, building in smoothness seems to become more and more important for
robustness. Using such an a priori low-dimensional representation has other potential bene-
fits: combined with the efficiency of CMT it opens the possibility of more expensive global
optimization approaches. Furthermore, these techniques are easily generalized to taper opti-
mization for other waveguide designs, including in 3d, and other uncertainty models. Asrobust
taper designs are particularly useful for coupling to slow-light modes in realistic experimen-
tal settings, they may potentialy form a crucial component of complex, reconfigurable and
dynamic optomechanical devices.
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