
Computer Physics Communications 181 (2010) 687–702
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Meep: A flexible free-software package for electromagnetic simulations by the
FDTD method ✩

Ardavan F. Oskooi a,c,∗, David Roundy b, Mihai Ibanescu a,c,d, Peter Bermel c, J.D. Joannopoulos a,c,d,
Steven G. Johnson a,c,e,∗∗
a Center for Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
b Department of Physics, Oregon State University, Corvallis, OR 97331, United States
c Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
d Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
e Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 October 2009
Received in revised form 13 November 2009
Accepted 17 November 2009
Available online 20 November 2009

Keywords:
Computational electromagnetism
FDTD
Maxwell solver

This paper describes Meep, a popular free implementation of the finite-difference time-domain (FDTD)
method for simulating electromagnetism. In particular, we focus on aspects of implementing a full-fea-
tured FDTD package that go beyond standard textbook descriptions of the algorithm, or ways in which
Meep differs from typical FDTD implementations. These include pervasive interpolation and accurate
modeling of subpixel features, advanced signal processing, support for nonlinear materials via Padé ap-
proximants, and flexible scripting capabilities.

Program summary

Program title: Meep
Catalogue identifier: AEFU_v1_0
Program summary URL:: http://cpc.cs.qub.ac.uk/summaries/AEFU_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU GPL
No. of lines in distributed program, including test data, etc.: 151 821
No. of bytes in distributed program, including test data, etc.: 1 925 774
Distribution format: tar.gz
Programming language: C++
Computer: Any computer with a Unix-like system and a C++ compiler; optionally exploits additional free
software packages: GNU Guile [1], libctl interface library [2], HDF5 [3], MPI message-passing interface [4],
and Harminv filter-diagonalization [5]. Developed on 2.8 GHz Intel Core 2 Duo.
Operating system: Any Unix-like system; developed under Debian GNU/Linux 5.0.2.
RAM: Problem dependent (roughly 100 bytes per pixel/voxel)
Classification: 10
External routines: Optionally exploits additional free software packages: GNU Guile [1], libctl interface
library [2], HDF5 [3], MPI message-passing interface [4], and Harminv filter-diagonalization [5] (which
requires LAPACK and BLAS linear-algebra software [6]).
Nature of problem: Classical electrodynamics
Solution method: Finite-difference time-domain (FDTD) method
Running time: Problem dependent (typically about 10 ns per pixel per timestep)
References:
[1] GNU Guile, http://www.gnu.org/software/guile
[2] Libctl, http://ab-initio.mit.edu/libctl
[3] M. Folk, R.E. McGrath, N. Yeager, HDF: An update and future directions, in: Proc. 1999 Geoscience and

Remote Sensing Symposium (IGARSS), Hamburg, Germany, vol. 1, IEEE Press, 1999, pp. 273–275.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

* Corresponding author at: Center for Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.

** Principal corresponding author.
E-mail addresses: ardavan@mit.edu (A.F. Oskooi), roundyd@physics.oregonstate.edu (D. Roundy), michel@alum.mit.edu (M. Ibanescu), bermel@mit.edu (P. Bermel),

joannop@mit.edu (J.D. Joannopoulos), stevenj@math.mit.edu (S.G. Johnson).
0010-4655/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2009.11.008

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AEFU_v1_0.html
http://www.gnu.org/software/guile
http://ab-initio.mit.edu/libctl
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:ardavan@mit.edu
mailto:roundyd@physics.oregonstate.edu
mailto:michel@alum.mit.edu
mailto:bermel@mit.edu
mailto:joannop@mit.edu
mailto:stevenj@math.mit.edu
http://dx.doi.org/10.1016/j.cpc.2009.11.008

688 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
[4] T.M. Forum, MPI: A Message Passing Interface, in: Supercomputing 93, Portland, OR, 1993, pp. 878–
883.

[5] Harminv, http://ab-initio.mit.edu/harminv.
[6] LAPACK, http://www.netlib.org/lapack/lug.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

One of the most common computational tools in classical
electromagnetism is the finite-difference time-domain (FDTD) al-
gorithm, which divides space and time into a regular grid and
simulates the time evolution of Maxwell’s equations [1–5]. This
paper describes our free, open-source implementation of the
FDTD algorithm: Meep (an acronym for MIT Electromagnetic Equa-
tion Propagation), available online at http://ab-initio.mit.edu/meep.
Meep is full-featured, including, for example: arbitrary anisotropic,
nonlinear, and dispersive electric and magnetic media; a vari-
ety of boundary conditions including symmetries and perfectly
matched layers (PML); distributed-memory parallelism; Cartesian
(1d/2d/3d) and cylindrical coordinates; and flexible output and
field computations. It also includes some unusual features, such
as advanced signal processing to analyze resonant modes, accurate
subpixel averaging, a frequency-domain solver that exploits the
time-domain code, complete scriptability, and integrated optimiza-
tion facilities. Here, rather than review the well-known FDTD algo-
rithm itself (which is thoroughly covered elsewhere), we focus on
the particular design decisions that went into the development of
Meep whose motivation may not be apparent from textbook FDTD
descriptions, the tension between abstraction and performance in
FDTD implementations, and the unique or unusual features of our
software.

Why implement yet another FDTD program? Literally dozens
of commercial FDTD software packages are available for purchase,
but the needs of research often demand the flexibility provided
by access to the source code (and relaxed licensing constraints to
speed porting to new clusters and supercomputers). Our interac-
tions with other photonics researchers suggest that many groups
end up developing their own FDTD code to serve their needs (our
own groups have used at least three distinct in-house FDTD im-
plementations over the past 15 years), a duplication of effort that
seems wasteful. Most of these are not released to the public, and
the handful of other free-software FDTD programs that could be
downloaded when Meep was first released in 2006 were not nearly
full-featured enough for our purposes. Since then, Meep has been
cited in over 100 journal publications and has been downloaded
over 10,000 times, reaffirming the demand for such a package.

FDTD algorithms are, of course, only one of many numeri-
cal tools that have been developed in computational electromag-
netism, and may perhaps seem primitive in light of other sophis-
ticated techniques, such as finite-element methods (FEMs) with
high-order accuracy and/or adaptive unstructured meshes [6–8],
or even radically different approaches such as boundary-element
methods (BEMs) that discretize only interfaces between homoge-
neous materials rather than volumes [9–12]. Each tool, of course,
has its strengths and weaknesses, and we do not believe that any
single one is a panacea. The nonuniform unstructured grids of
FEMs, for example, have compelling advantages for metallic struc-
tures where micrometer wavelengths may be paired with nanome-
ter skin depths. On the other hand, this flexibility comes at a price
of substantial software complexity, which may not be worthwhile
for dielectric devices at infrared wavelengths (such as in integrated
optics or fibers) where the refractive index (and hence the typical
resolution required) varies by less than a factor of four between
materials, while small features such as surface roughness can be
accurately handled by perturbative techniques [13]. BEMs, based
on integral-equation formulations of electromagnetism, are espe-
cially powerful for scattering problems involving small objects in
a large volume, since the volume need not be discretized and no
artificial “absorbing boundaries” are needed. On the other hand,
BEMs have a number of limitations: they may still require artificial
absorbers for interfaces extending to infinity (such as input/output
waveguides) [14]; any change to the Green’s function (such as in-
troduction of anisotropic materials, imposition of periodic or sym-
metry boundary conditions, or a switch from three to two dimen-
sions) requires re-implementation of large portions of the software
(e.g. singular panel integrations and fast solvers) rather than purely
local changes as in FDTD or FEM; continuously varying (as op-
posed to piecewise-constant) materials are inefficient; and solution
in the time domain (rather than frequency domain, which is inad-
equate for nonlinear or active systems in which frequency is not
conserved) with BEM requires an expensive solver that is nonlocal
in time as well as in space [11]. And then, of course, there are spe-
cialized tools that solve only a particular type of electromagnetic
problem, such as our own MPB software that only computes eigen-
modes (e.g. waveguide modes) [15], which are powerful and robust
within their domain but are not a substitute for a general-purpose
Maxwell simulation. FDTD has the advantages of simplicity, gener-
ality, and robustness: it is straightforward to implement the full
time-dependent Maxwell equations for nearly arbitrary materi-
als (including nonlinear, anisotropic, dispersive, and time-varying
materials) and a wide variety of boundary conditions, one can
quickly experiment with new physics coupled to Maxwell’s equa-
tions (such as populations of excited atoms for lasing [16–20]), and
the algorithm is easily parallelized to run on clusters or supercom-
puters. This simplicity is especially attractive to researchers whose
primary concern is investigating new interactions of physical pro-
cesses, and for whom programmer time and the training of new
students is far more expensive than computer time.

The starting point for any FDTD solver is the time-derivative
parts of Maxwell’s equations, which in their simplest form can be
written:

∂B

∂t
= −∇ × E − JB , (1)

∂D

∂t
= +∇ × H − J, (2)

where (respectively) E and H are the macroscopic electric and
magnetic fields, D and B are the electric displacement and mag-
netic induction fields [21], J is the electric-charge current den-
sity, and JB is a fictitious magnetic-charge current density (some-
times convenient in calculations, e.g. for magnetic-dipole sources).
In time-domain calculations, one typically solves the initial-value
problem where the fields and currents are zero for t < 0, and
then nonzero values evolve in response to some currents J(x, t)
and/or JB(x, t). (In contrast, a frequency-domain solver assumes a
time dependence of e−iωt for all currents and fields, and solves the
resulting linear equations for the steady-state response or eigen-
modes [22, Appendix D].) We prefer to use dimensionless units
ε0 = μ0 = c = 1. From our perspective, this choice emphasizes
both the scale invariance of Maxwell’s equations [22, Chapter 2]
and also the fact that the most meaningful quantities to calcu-
late are almost always dimensionless ratios (such as scattered

http://ab-initio.mit.edu/harminv
http://www.netlib.org/lapack/lug
http://ab-initio.mit.edu/meep

A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702 689
Fig. 1. The computational cell is divided into chunks (left) that have a one-pixel overlap (gray regions). Each chunk (right) represents a portion of the Yee grid, partitioned
into owned points (chunk interior) and not-owned points (gray regions around the chunk edges) that are determined from other chunks and/or via boundary conditions.
Every point in the interior of the computational cell is owned by exactly one chunk, the chunk responsible for timestepping that point.
power over incident power, or wavelength over some character-
istic lengthscale). The user can pick any desired unit of distance
a (either an SI unit such as a = 1 μm or some typical length-
scale of a given problem), and all distances are given in units
of a, all times in units of a/c, and all frequencies in units of c/a.
In a linear dispersionless medium, the constituent relations are
D = εE and B = μH, where ε and μ are the relative permittivity
and permeability (possibly tensors); the case of nonlinear and/or
dispersive media (including conductivities) is discussed further in
Section 4.

The remaining paper is organized as follows. In Section 2, we
discuss the discretization and coordinate system; in addition to
the standard Yee discretization [1], this raises the question of how
exactly the grid is described and divided into “chunks” for par-
allelization, PML, and other purposes. Section 3 describes a cen-
tral principle of Meep’s design, pervasive interpolation providing (as
much as possible) the illusion of continuity in the specification of
sources, materials, outputs, and so on. This led to the develop-
ment of several techniques unique to Meep, such as a scheme for
subpixel material averaging designed to eliminate the first-order
error usually associated with averaging techniques or stairstep-
ping of interfaces. In Section 4, we describe and motivate our
techniques for implementing nonlinear and dispersive materials,
including a slightly unusual method to implement nonlinear ma-
terials using a Padé approximant that eliminates the need to solve
cubic equations for every pixel. Section 5 describes how typical
computations are performed in Meep, such as memory-efficient
transmission spectra or sophisticated analysis of resonant modes
via harmonic inversion. This section also describes how we have
adapted the time-domain code, almost without modification, to
solve frequency-domain problems with much faster convergence
to the steady-state response than merely time-stepping. The user
interface of Meep is discussed in Section 6, explaining the consid-
erations that led us to a scripting interface (rather than a GUI or
CAD interface). Section 7 describes some of the tradeoffs between
performance and generality in this type of code and the specific
compromises chosen in Meep. Finally, we make some concluding
remarks in Section 8.

2. Grids and boundary conditions

The starting point for the FDTD algorithm is the discretization
of space and time into a grid. In particular, Meep uses the standard
Yee grid discretization which staggers the electric and magnetic
fields in time and in space, with each field component sampled at
different spatial locations offset by half a pixel, allowing the time
and space derivatives to be formulated as center-difference approx-
imations [23]. This much is common to nearly every FDTD im-
plementation and is described in detail elsewhere [1]. In order to
parallelize Meep, efficiently support simulations with symmetries,
and to efficiently store auxiliary fields only in certain regions (for
PML absorbing layers), Meep further divides the grid into chunks
that are joined together into an arbitrary topology via boundary
conditions. (In the future, different chunks may have different res-
olutions to implement a nonuniform grid [24–27].) Furthermore,
we distinguish two coordinate systems: one consisting of integer
coordinates on the Yee grid, and one of continuous coordinates in
“physical” space that are interpolated as necessary onto the grid
(see Section 3). This section describes those concepts as they are
implemented in Meep, as they form a foundation for the remain-
ing sections and the overall design of the Meep software.

2.1. Coordinates and grids

The two spatial coordinate systems in Meep are described by
the vec, a continuous vector in R

d (in d dimensions), and the
ivec, an integer-valued vector in Z

d describing locations on the
Yee grid. If n is an ivec, the corresponding vec is given by
0.5�xn, where �x is the spatial resolution (the same along x, y,
and z)—that is, the integer coordinates in an ivec correspond
to half -pixels, as shown in the right panel of Fig. 1. This is to
represent locations on the spatial Yee grid, which offsets differ-
ent field components in space by half a pixel as shown (in 2d)
in the right panel of Fig. 1. In 3d, the Ex and Dx components
are sampled at ivecs (2� + 1,2m,2n), E y and D y are sampled
at ivecs (2�,2m + 1,2n), and so on; Hx and Bx are sampled
at ivecs (2�,2m + 1,2n + 1), H y and B y are sampled at ivecs
(2� + 1,2m,2n + 1), and so on. In addition to these grids for the
different field components, we also occasionally refer to the cen-
tered grid, at odd ivecs (2� + 1,2m + 1,2n + 1) corresponding to
the “center” of each pixel. (The origin of the coordinate systems is
an arbitrary ivec that can be set by the user, but is typically the
center of the computational volume.) The philosophy of Meep, as
described in Section 3, is that as much as possible the user should
be concerned only with continuous physical coordinates (vecs),
and the interpolation/discretization onto ivecs occurs internally
as transparently as possible.

690 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
Fig. 2. Meep can exploit mirror and rotational symmetries, such as the 180-degree (C2) rotational symmetry of the S-shaped structure in this schematic example. Although
Meep maintains the illusion that the entire structure is stored and simulated, internally only half of the structure is stored (as shown at right), and the other half is inferred
by rotation. The rotation gives a boundary condition for the not-owned grid points along the dashed line.
2.2. Grid chunks and owned points

An FDTD simulation must occur within a finite volume of space,
the computational cell, terminated with some boundary conditions
and possibly by absorbing PML regions as described below. This
(rectilinear) computational cell, however, is further subdivided into
convex rectilinear chunks. On a parallel computer, for example, dif-
ferent chunks may be stored at different processors. In order to
simplify the calculations for each chunk, we employ the common
technique of padding each chunk with extra “boundary” pixels that
store the boundary values [28] (shown as gray regions in Fig. 1)—
this means that the chunks are overlapping in the interior of the
computational cell, where the overlaps require communication to
synchronize the values.

More precisely, the grid points in each chunk are partitioned
into owned and not-owned points. The not-owned points are deter-
mined by communication with other chunks and/or by boundary
conditions. The owned points are time-stepped within the chunk,
independently of the other chunks (and possibly in parallel), and
every grid point inside the computational cell is owned by exactly one
chunk.

The question then arises: how do we decide which points
within the chunk are owned? In order for a grid point to be
owned, the chunk must contain all the information necessary for
timestepping that point (once the not-owned points have been
communicated). For example, for a D y point (2�,2m + 1,2n) to
be owned, the Hz points at (2� ± 1,2m + 1,2n) must both be in
the chunk in order to compute ∇ × H for timestepping D at that
point. This means that the D y points along the left (minimum-x)
edge of the chunk (as shown in the right panel of Fig. 1) cannot
be owned: there is no Hz point to the left of it. An additional de-
pendency is imposed by the case of anisotropic media: if there is
an εxy coupling Ex to D y , then updating Ex at (2� + 1,2m,2n) re-
quires the four D y values at (2�+ 1 ± 1,2m ± 1,2n) (these are the
surrounding D y values, as seen in the right panel of Fig. 1). This
means that the Ex (and Dx) points along the right (maximum-x)
edge of the chunk (as shown in the right panel of Fig. 1) cannot
be owned either: there is no D y point to the right of it. Similarly
for ∇ × D and anisotropic μ.

All of these considerations result in the shaded-gray region of
Fig. 1 (right) being not-owned. That is, if the chunk intersects k +1
pixels along a given direction starting at an ivec coordinate of 0
(e.g. k = 5 in Fig. 1), the endpoint ivec coordinates 0 and 2k + 1
are not-owned and the interior coordinates from 1 to 2k (inclusive)
are owned.

2.3. Boundary conditions and symmetries

All of the not-owned points in a chunk must be determined
by boundary conditions of some sort. The simplest boundary con-
ditions are when the not-owned points are owned by some other
chunk, in which case the values are simply copied from that chunk
(possibly requiring communication on a multiprocessor system)
each time they are updated. In order to minimize communications
overhead, all communications between two chunks are batched
into a single message (by copying the relevant not-owned points
to/from a contiguous buffer) rather than sending one message per
point to be copied.

At the edges of the computational cell, some user-selected
boundary condition must be imposed. For example, one can
use perfect electric or magnetic conductors where the relevant
electric/magnetic-field components are set to zero at the bound-
aries. One can also use Bloch-periodic boundary conditions, where
the fields on one side of the computational cell are copied from
the other side of the computational cell, optionally multiplied by
a complex phase factor eikiΛi where ki is the propagation constant
in the ith direction, and Λi is the length of the computational cell
in the same direction. Meep does not implement any absorbing
boundary conditions—absorbing boundaries are, instead, handled
by an artificial material, perfectly matched layers (PML), placed
adjacent to the boundaries [1].

Bloch-periodic boundary conditions are useful in periodic sys-
tems [22], but this is only one example of a useful symmetry that
may be exploited via boundary conditions. One may also have mir-
ror and rotational symmetries. For example, if the materials and
the field sources have a mirror symmetry, one can cut the com-
putational costs in two by storing chunks only in half the com-
putational cell and applying mirror boundary conditions to obtain
the not-owned pixels adjacent to the mirror plane. As a more un-
usual example, consider an S-shaped structure as in Fig. 2, which
has no mirror symmetry but is symmetric under 180-degree rota-
tion, called C2 symmetry [29]. Meep can exploit this case as well
(assuming the current sources have the same symmetry), storing
only half of the computational cell as in Fig. 2 and inferring the
not-owned values along the dashed line by a 180-degree rotation.
(In the simple case where the stored region is a single chunk, this
means that the not-owned points are determined by owned points
in the same chunk, requiring copies, possibly with sign flips.) De-
pending on the sources, of course, the fields can be even or odd
under mirror flips or C2 rotations [22], so the user can specify an
additional sign flip for the transformation of the vector fields (and
pseudovector H and B fields, which incur an additional sign flip
under mirror reflections [21,22]). Meep also supports four-fold ro-
tation symmetry (C4), where the field can be multiplied by factors
of 1, i, −1, or −i under each 90-degree rotation [29]. (Other ro-
tations, such as three-fold or six-fold, are not supported because
they do not preserve the Cartesian Yee grid.) In 2d, the xy-plane
is itself a mirror plane (unless in the presence of anisotropic ma-
terials) and the symmetry decouples TE modes (with fields Ex , E y ,
and Hz) from TM modes (Hx , H y , and Ez) [22]; in this case Meep
only allocates those fields for which the corresponding sources are
present.

A central principle of Meep is that symmetry optimizations be
transparent to the user once the desired symmetries are speci-

A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702 691
Fig. 3. A key principle of Meep is that continuously varying inputs yield continuously varying outputs. Here, an eigenfrequency of a photonic crystal varies continuously with
the eccentricity of a dielectric rod, accomplished by subpixel smoothing of the material parameters, whereas the nonsmoothed result is “stairstepped”. Specifically, the plot
shows a TE eigenfrequency of 2d square lattice (period a) of dielectric ellipses (ε = 12) in air versus one semi-axis diameter of the ellipse (in gradations of 0.005a) for no
smoothing (red squares, resolution of 20 pixels/a), subpixel smoothing (blue circles, resolution of 20 pixels/a) and “exact” results (black line, no smoothing at resolution of
200 pixels/a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
fied. Meep maintains the illusion that the entire computational
cell is computed—for example, the fields in the entire computa-
tional cell can still be queried or exported to a file, flux planes and
similar computations can still extend anywhere within the com-
putational cell, and so on. The fields in the nonstored regions are
simply computed behind the scenes (without ever allocating mem-
ory for them) by transforming the stored chunks as needed. A key
enabling factor for maintaining this illusion efficiently is the loop-
in-chunks abstraction employed by the Meep code, described in
Section 7.

Meep also supports continuous rotational symmetry around a
given axis, where the structure is invariant under rotations and the
fields transform as eimφ for some m [22], but this is implemented
separately by providing the option to simulate Maxwell’s equations
in the (r, z)-plane with cylindrical coordinates, for which operators
like ∇ × change form.

3. Interpolation and the illusion of continuity

A core design philosophy of Meep is to provide the illusion of
continuous space and time, masking the underlying discretization
from the user as much as possible. There are two components to
this approach: the input and the outputs. Continuously varying in-
puts, such as the geometry, materials, and the source currents, lead
to continuously varying outputs, as in the example of Fig. 3. Sim-
ilarly, the value of any field (or any function of the fields) can be
output at any point in space or integrated over any region. Further-
more, the effects of these inputs and the resulting outputs must
converge as quickly as possible to the exact solution as the res-
olution increases. In this section, we discuss how this illusion of
continuity is implemented for field outputs, current inputs, and ge-
ometry/materials.

Any field component (or any combinations such as flux, energy,
and user-defined functions) can be evaluated at any point in space.
In general, this requires interpolation from the Yee grid. Since the
underlying FDTD center-difference algorithm has second-order ac-
curacy, we linearly interpolate fields as needed (which also has
second-order accuracy for smooth functions). Similarly, we pro-
vide an interface to integrate any function of the fields over any
convex rectilinear region (boxes, planes, or lines), and the integral
is computed by integrating the linear interpolation of the fields
within the integration region. This is straightforward, but there are
two subtleties due to the staggered Yee grid. First, computation
of quantities like E × H that mix different field components re-
quires an additional interpolation: first, the fields are interpolated
onto the centered grid (Section 2), then the integrand is computed,
and then the linear interpolation of the integrand is integrated
over the specified region. Second, the computation of quantities
like E × H mixes two fields that are stored at different times: H
is stored at times (n − 0.5)�t , while E is stored at times n�t [1].
Simply using these time-offset fields together is only first-order
accurate. If second-order accuracy is desired, Meep provides the
option to temporarily synchronize the electric and magnetic fields:
the magnetic fields are saved to a backup array, stepped by �t , and
they are averaged with the backup array to obtain the magnetic
fields at n�t with O (�t2) accuracy. (The fields are restored from
backup before resuming timestepping.) This restores second-order
accuracy at the expense of an extra half a timestep’s computa-
tion, which is usually negligible because such field computations
are rarely required at every timestep of a simulation—see Section 5
for how Meep performs typical transmission simulations and other
calculations efficiently.

The conceptually reversed process is required for specifying
sources: the current density is specified at some point (for dipole
sources) or in some region (for distributed current sources) in
continuous space, and then must be restricted to a corresponding
current source on the Yee grid. Meep performs this restriction us-
ing exactly the same code (the loop-in-chunks abstraction of Sec-
tion 7) and the same weights as the interpolation procedure above.
Mathematically, we are exploiting a well-known concept (originat-
ing in multigrid methods) that restriction can be defined as the
transpose of interpolation [30]. This is illustrated by a 2d exam-
ple in Fig. 4. Suppose that the bilinear interpolation f (blue) of
four grid points (red) is f = 0.32 f1 + 0.48 f2 + 0.08 f3 + 0.12 f4,
which can be viewed as multiplying a vector of those fields by the
row-vector [0.32,0.48,0.08,0.12]. Conversely, if we place a point-
dipole current source J (blue) at the same point, it is restricted on
the grid (red) to values J1 = 0.32 J , J2 = 0.48 J , J3 = 0.08 J , and
J4 = 0.12 J as shown in Fig. 4, corresponding to multiplying J by

692 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
Fig. 4. Left: a bilinear interpolation of values f1,2,3,4 on the grid (red) to the value f at an arbitrary point. Right: the reverse process is restriction, taking a value J at an
arbitrary point (e.g. a current source) and converting into values on the grid. Restriction can be viewed as the transpose of interpolation and uses the same coefficients. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Cerenkov radiation emitted by a point charge moving at a speed v = 1.05c/n exceeding the phase velocity of light in a homogeneous medium of index n = 1.5. Thanks
to Meep’s interpolation (or technically restriction), the smooth motion of the source current (left panel) can be expressed as continuously varying currents on the grid,
whereas the nonsmooth pixelized motion (no interpolation) (right panel) reveals high-frequency numerical artifacts of the discretization (counter-propagating wavefronts
behind the moving charge).
the column vector [0.32,0.48,0.08,0.12]T.1 Such a restriction has
the property of preserving the sum (integral) of the currents, and
typically leads to second-order convergence of the resulting fields
as the resolution increases (see below). An example of the utility of
this continuous restriction process is shown in Fig. 5 via the phe-
nomenon of Cerenkov radiation [31]: a point charge q moving at a
constant velocity v with a magnitude 1.05c/n exceeding the phase
velocity c/n in the medium emits a shockwave-like radiation pat-
tern, and this can be directly modeled in Meep by a continuously
moving current source J = −vqδ(x − vt) [32]. In contrast, pixeliz-
ing the motion into discrete jumps to the nearest grid point leads
to visible numerical artifacts in the radiation, as seen in the right
panel of Fig. 5.

All of the second-order accuracy of FDTD and the above in-
terpolations is generally spoiled to only first-order, however, if
one directly discretizes a discontinuous material boundary [33,35].
Moreover, directly discretizing a discontinuity in ε or μ leads to
“stairstepped” interfaces that can only be varied in discrete jumps
of one pixel at a time. Both of these problems are solved in
Meep by using an appropriate subpixel smoothing of ε and μ:
before discretizing, discontinuities are smoothed into continuous
transitions over a distance of one pixel �x, using a carefully de-
signed averaging procedure. Any subpixel smoothing technique
will achieve the goal of continuously varying results as the geome-
try is continuously varied. In the case of Meep this is illustrated by

1 Technically, for a dipole-current source given by a delta function with amplitude

I , the corresponding current density is J = I/�xd in d dimensions.
Fig. 3: in a 2d photonic crystal (square lattice of dielectric rods),
the lowest TE-polarization eigenfrequency (computed as in Sec-
tion 5) varies continuously with the eccentricity of the elliptical
rods for subpixel averaging, whereas the nonaveraged discontinu-
ous discretization produces a stairstepped discontinuous eigenfre-
quency. On the other hand, most subpixel smoothing techniques
will not increase the accuracy of FDTD—on the contrary, smoothing
discontinuous interfaces changes the structure, and generally intro-
duces additional error into the simulation [33]. In order to design
an accurate smoothing technique, we exploited recent results in
perturbation theory that show how a particular subpixel smooth-
ing can be chosen to yield zero first-order error [13,33,34,36]. The
results are shown in Figs. 6 and 7: for both computation of the
eigenfrequencies (of an anisotropic photonic crystal) in Fig. 6 and
the scattering loss from a bump on a strip waveguide in Fig. 7, the
errors in Meep’s results decrease quadratically [O (�x2)], whereas
doing no averaging leads to erratic linear convergence [O (�x)].
Furthermore, Fig. 6 compares to other subpixel-averaging schemes,
including the obvious strategy of simply averaging ε within each
pixel [37], and shows that they lead to first-order convergence no
better than no averaging at all.

The subpixel averaging is discussed in more detail elsewhere
[33,34,36], so we only briefly summarize it here. In order for the
smoothing to yield zero first-order perturbation, the smoothing
scheme must be anisotropic. Even if the initial interface is between
isotropic materials, one obtains a tensor ε (or μ) which uses the
mean ε for fields parallel to the interface and the harmonic mean
(inverse of mean of ε−1) for fields perpendicular to the interface—
this was initially proposed heuristically [38] and later shown to be

A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702 693
Fig. 6. Appropriate subpixel averaging can increase the accuracy of FDTD with discontinuous materials [33,34]. Here, relative error �ω/ω (comparing to the “exact” ω0 from
a planewave calculation [15]) for an eigenmode calculation (as in Section 5) for a cubic lattice (period a) of 3d anisotropic-ε ellipsoids (right inset) versus spatial resolution
(units of pixels per vacuum wavelength λ), for a variety of subpixel smoothing techniques. Straight lines for perfect linear (black dashed) and perfect quadratic (black solid)
convergence are shown for reference. Most curves are for the first eigenvalue band (left inset shows Ex in xy cross-section of unit cell), with vacuum wavelength λ = 5.15a.
Hollow squares show Meep’s method for band 13 (middle inset), with λ = 2.52a. Meep’s method for bands 1 and 13 is shown for resolutions up to 100 pixels/a.

Fig. 7. The relative error in the scattered power from a small semicircular bump in a dielectric waveguide (ε = 12), excited by a point-dipole source in the waveguide
(geometry and fields shown in inset), as a function of the computational resolution. Appropriate subpixel smoothing of the dielectric interfaces leads to roughly second-order
[O (�x2)] convergence (red squares), whereas the unsmoothed structure has only first-order convergence (blue circles). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
justified via perturbation theory [13,33]. (If the initial materials are
anisotropic, a more complicated formula is needed [34,36].) The
key point is that, even if the physical structure consists entirely
of isotropic materials, the discretized structure will use anisotropic
materials. Stable simulation of anisotropic media requires an FDTD
variant recently proposed in Ref. [39].

There are a few limitations to this subpixel averaging. First, the
case of perfect metals requires a different approach [40,41] that
is not yet implemented in Meep. Although Meep does not yet
implement subpixel averaging for dispersive materials, there is nu-
merical evidence that similar accuracy improvements are obtained
in that case by the same technique [42], and we suspect that a
similar derivation can be applied (using the unconjugated form of
perturbation theory for the complex-symmetric Maxwell equations
in reciprocal media with losses [43]). Second, once the smoothing
eliminates the first-order error, the presence of sharp corners (as-
sociated with field singularities) introduce an error intermediate
between first- and second-order [33], which we hope to address in

694 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
future work. Third, the fields directly on the interface are still at
best first-order accurate even with subpixel smoothing—however,
these localized errors are equivalent to currents that radiate zero
power to first order [36,44]. The improved accuracy from smooth-
ing is therefore obtained for fields evaluated off of the interface
as in scattered flux integrated over a surface away from the in-
terface (Fig. 7), for nonlocal properties like resonant frequencies
and eigenfrequencies (Fig. 6), and for overall integrals of fields and
energies [to which the interface contributes only O (�x) of the in-
tegration domain and hence first-order errors on the interface have
a second-order effect].

4. Materials

Time-dependent methods for electromagnetism, given their
generality, allow for the simulation of a broad range of mate-
rial systems. Certain classes of materials, particularly active and
nonlinear materials which do not conserve frequency, are ideally
suited for modeling by such methods. Materials are represented
in Maxwell’s equations (1) and (2) via the relative permittivity
ε(x) and permeability μ(x) which in general depend on position,
frequency (material dispersion) and the fields themselves (nonlin-
earities). Meep currently supports arbitrary anisotropic material
tensors, anisotropic dispersive materials (Lorentz–Drude models
and conductivities, both magnetic and electric), and nonlinear ma-
terials (both second- and third-order nonlinearities), which taken
together permit investigations of a wide range of physical phe-
nomena. The implementation of these materials in Meep is mostly
based on standard techniques [1], so we will focus here on two
places where Meep differs from the usual approach. For nonlinear-
ities, we use a Padé approximant to avoid solving cubic equations
at each step. For PML absorbing media in cylindrical coordinates,
we only use a “quasi-PML” [46] based on a Cartesian PML, but
explain why its performance is comparable to a true PML while
requiring less computational effort.

4.1. Nonlinear materials

Optical nonlinearities arise when large field intensities induce
changes in the local ε or μ to produce a number of interesting ef-
fects: temporal and spatial soliton propagation, optical bistability,
self-focusing of optical beams, second- and third-harmonic gener-
ation, and many other effects [47,48]. Such materials are usually
described by a power-series expansion of D in terms of E and
various susceptibilities. In many common materials, or when con-
sidering phenomena in a sufficiently narrow bandwidth (such as
the resonantly enhanced nonlinear effects [49] well-suited to FDTD
calculations), these nonlinear susceptibilities can be accurately ap-
proximated via nondispersive (instantaneous) effects [50]. Meep
supports instantaneous isotropic (or diagonal anisotropic) nonlin-
ear effects of the form:

Di − Pi = ε(1)Ei + χ
(2)
i E2

i + χ
(3)
i |E|2 Ei, (3)

where ε(1) represents all the linear nondispersive terms and Pi is a
dispersive polarization P = χ

(1)

dispersive(ω)E from dispersive materi-
als such as Lorentz media [1]. (A similar equation relates B and H.)
Implementing this equation directly, however, would require one
to solve a cubic equation at each time step [1, Section 9.6], since
D is updated from ∇ × H before updating E from D.

However, Eq. (3) is merely a power-series approximation for the
true material response, valid for sufficiently small field intensities,
so it is not necessary to insist that it be solved exactly. Instead, we
approximate the solution of Eq. (3) by a Padé approximant [51],
which matches the “exact” cubic solution to high-order accuracy
by the rational function:
Ei =
[1 + (

χ(2)

[ε(1)]2 D̃i) + 2(
χ(3)

[ε(1)]3 ‖D̃‖2)

1 + 2(
χ(2)

[ε(1)]2 D̃i) + 3(
χ(3)

[ε(1)]3 ‖D̃‖2)

][
ε(1)

]−1
D̃i, (4)

where D̃i = Di − Pi . For the case of isotropic ε(1) and χ(2) = 0,
so that we have a purely Kerr (χ(3)) material, this matches the
“exact” cubic E to O (D7) error. With χ(2) �= 0, the error is O (D4).

For more complicated dispersive nonlinear media or for arbi-
trary anisotropy in χ(2) or χ(3) , one approach that Meep may
implement in the future is to incorporate the nonlinear terms in
the auxiliary differential equations for a Lorentz medium [1].

4.2. Absorbing boundary layers: PML, pseudo-PML, and quasi-PML

A perfectly matched layer (PML) is an artificial absorbing
medium that is commonly used to truncate computational grids
for simulating wave equations (e.g. Maxwell’s equations), and is
designed to have the property that interfaces between the PML
and adjacent media are reflectionless in the exact wave equa-
tion [1]. There are various interchangeable formulations of PML
for FDTD methods [1], which are all equivalent to a coordinate
stretching of Maxwell’s equations into complex spatial coordinates;
Meep implements a version of the uniaxial PML (UPML), express-
ing the PML as an effective dispersive anisotropic ε and μ [1].
Meep provides support for arbitrary user-specified PML absorption
profiles (which have an important influence on reflections due to
discretization error and other effects) for a given round-trip reflec-
tion (describing the strength of the PML in terms of the amplitude
of light passing through the PML, reflecting off the edge of the
computational cell, and propagating back) [45]. For the case of pe-
riodic media such as photonic crystals, the medium is not analytic
and the premise of PML’s reflectionless property is violated; in this
case, a “PML” material overlapped with the photonic crystal is only
a “pseudo-PML” that is reflectionless only in the limit of a suffi-
ciently thick and gradual absorber, and control over the absorption
profile is important [45].

For the radial direction in cylindrical coordinates, a true PML
can be derived by coordinate-stretching, but it requires more stor-
age and computational effort than the Cartesian UPML [52,53],
as well as increasing code complexity. Instead, we chose to im-
plement a quasi-PML [46], which simply consists of using the
Cartesian UPML materials as an approximation for the true ra-
dial PML. This approximation becomes more and more accurate
as the outer radius of the computational cell increases, because
the implicit curvature of the PML region decreases with radius and
approaches the Cartesian case. Furthermore, one must recall that
every PML has reflections once space is discretized [1], which can
be mitigated by gradually turning on the PML absorption over a
finite-thickness PML layer. The quasi-PML approximation is like-
wise mitigated by the same gradual absorption profile, and the
only question is that of the constant factor in the reflection con-
vergence: how thick does the quasi-PML need to be to achieve low
reflections, compared to a true PML? Fig. 8 shows that, for a typ-
ical calculation, the performance of the quasi-PML in cylindrical
coordinates (left) is comparable to that of a true PML in Cartesian
coordinates (right). Here, we plot a measure of the reflection from
the PML as a function of the PML absorber length L, for a fixed
round-trip reflection [45], using as a measure of the reflection the
“field convergence” factor: the difference between the E field at a
given point for simulations with PML absorber lengths L and L +1.
The PML conductivity σ(x) is turned on gradually as (x/L)d for
d = 1,2,3, and it can be shown that this leads to reflections that
decrease as 1/L2d+2 and field-convergence factors that decrease as
1/L2d+4 [45]. Precisely these decay rates are observed in Fig. 8,
with similar constant coefficients. As the resolution is increased
(approaching the exact wave equations), the constant coefficient in

A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702 695
Fig. 8. The performance of a quasi-PML in the radial direction (cylindrical coordinates, left panel) at a resolution 20 pixels/λ is nearly equivalent to that of a true PML (in
Cartesian coordinates, right panel). The plot shows the difference in the electric field Ez (insets) from a point source between simulations with PML thickness L and L + 1,
which is a simple proxy for the PML reflections [45]. The different curves are for PML conductivities that turn on as (x/L)d for d = 1,2,3 in the PML, leading to different
rates of convergence of the reflection [45].
the Cartesian PML plot will decrease (approaching zero reflection),
while the quasi-PML’s constant coefficient will saturate at some
minimum (corresponding to its finite reflectivity in the exact wave
equation for a fixed L). This difference seems of little practical con-
cern, however, because the reflection from a one-wavelength thick
quasi-PML at a moderate resolution (20 pixels/λ) is already so low.

5. Enabling typical computations

Simulating Maxwell’s equations in the time domain enables
the investigation of problems inherently involving multiple fre-
quencies, such as nonlinearities and active media. However, it is
also well adapted to solving frequency domain problems since it
can solve large bandwidths at once, for example analyzing reso-
nant modes or computing transmission/reflection spectra. In this
section, we describe techniques Meep uses to efficiently com-
pute scattering spectra and resonant modes in the time domain.
Furthermore, we describe how the time domain method can be
adapted to a purely frequency domain solver while sharing almost
all of the underlying code.

5.1. Computing flux spectra

A principle task of computational time-domain tools are in-
vestigations of transmission or scattering spectra from arbitrary
structures, where one wants to compute the transmitted or scat-
tered power in a particular direction as a function of the frequency
of incident light. One can solve for the power at many frequen-
cies in a single time-domain simulation by Fourier transforming
the response to a short pulse. Specifically, for a given surface S ,
one wishes to compute the integral of the Poynting flux:

P (ω) = �
�

S

Eω(x)∗ × Hω(x)dA, (5)

where Eω and Hω are the fields produced by a source at fre-
quency ω, and � denotes the real part of the expression. The basic
idea, in time-domain, is to use a short-pulse source (covering a
wide bandwidth including all frequencies of interest), and compute
Eω and Hω from the Fourier transforms of E(t) and H(t). There
are several different ways to compute these Fourier transforms. For
example, one could store the electric and magnetic fields through-
out S over all times and at the end of the simulation perform a
discrete-time Fourier transform (DTFT) of the fields:

Eω =
∑

n

eiωn�tE(n�t)�t, (6)

for all frequencies (ω) of interest, possibly exploiting a fast Fourier
transform (FFT) algorithm. Such an approach has the following
computational cost: for a simulation having T timesteps, F � T
frequencies to compute, N S fields in the flux region and N pixels in
the entire computational cell this approach requires Θ(N + N S T)

storage and Θ(NT + T log T) time (using a FFT-based chirp-z al-
gorithm [54]).2 The difficulty with this approach is that if a long
simulation (large T) is required to obtain a high frequency res-
olution by the usual uncertainty relation [56], then the Θ(N S T)

storage requirements for the fields E(t) and H(t) at each point in
S become excessive. Instead, Meep accumulates the DTFT summa-
tion of the fields at every point in S as the simulation progresses;
once the time stepping has terminated, Eq. (5) can be evaluated
using these Fourier-transformed fields.3 The computational cost of
this approach is Θ(N + N S F) storage [much less than Θ(N S T) if
F � T] and Θ(NT + N S F T) time. Although our current approach
works well, another possible approach that we have been consid-
ering is to use Padé approximation: one stores the fields at every
timestep on S , but instead of using the DTFT one constructs a Padé
approximant to extrapolate the infinite-time DTFT from a short
time series [57]. This requires Θ(N + N S T) storage (but T is po-
tentially much smaller) and O (NT + T log2 T) time [58].

2 Here, Θ has the usual meaning of an asymptotic tight bound [55].
3 It is tempting to instead accumulate the Fourier transform of the Poynting flux

at each time, but this is not correct since the flux is not a linear function of the
fields.

696 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
Fig. 9. Relative error in the quality factor Q for a photonic-crystal resonant cavity (inset, period a) with Q ∼ 106, versus simulation time in units of optical periods of the
resonance. Blue circles: filter-diagonalization method. Red squares: least-squares fit of energy in cavity to a decaying exponential. Filter-diagonalization requires many fewer
optical periods than the decay time Q , whereas curve fitting requires a simulation long enough for the fields to decay significantly. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
5.2. Analyzing resonant modes

Another major goal of time-domain simulations is analysis of
resonant phenomena, specifically by determining the resonant fre-
quency ω0 and the quality factors Q (i.e., the number of optical
cycles 2π/ω0 for the field to decay by e−2π) of one or more res-
onant modes. One straightforward and common approach to com-
pute ω0 and Q is by computing the DTFT of the field at some
point in the cavity in response to a short pulse [1]: ω0 is then
the center of a peak in the DTFT and 1/Q is the fractional width
of the peak at half maximum. The problem with this approach is
that the Fourier uncertainty relation (equivalently, spectral leak-
age from the finite time window [56]) means that resolving the
peak in this way requires a simulation much longer than Q /ω0
(problematic for structures that may have very high Q , even 109

or higher [59]). Alternatively, one can perform a least squares fit of
the field time-series within the cavity to an exponentially decaying
sinusoid, but this leads to an ill-conditioned, nonconvex, nonlinear
fitting problem (and is especially difficult if more than one res-
onant mode may be present). If only a single resonant mode is
present, one can perform a least-squares fit of the energy in the
cavity to a decaying exponential in order to determine Q , but a
long simulation is still required to accurately resolve a large Q
(as shown below). A more accurate and efficient approach, re-
quiring only a short simulation even for very large Q values, is
the technique of filter diagonalization originally developed for NMR
spectroscopy, which transforms the time-series data into a small
eigenproblem that is solved for all resonant frequencies and qual-
ity factors at once (even for multiple overlapping resonances) [60].
Chapter 16 of Ref. [1] compared the DFT peak-finding method with
filter-diagonalization by attempting to resolve two near-degenerate
modes in a microcavity, and demonstrated the latter’s ability to
accurately resolve closely-spaced peaks with as much as a factor
of five times fewer timesteps. In our own work, we have used
filter diagonalization to compute quality factors of 108 or more us-
ing simulations only a few hundred optical cycles in length [59].
We quantify the ability of filter diagonalization to resolve a large
Q ∼ 106 in Fig. 9, comparing the relative error in Q versus simula-
tion time for filter diagonalization and the least-squares energy-fit
method above. (The specific cavity is formed by a missing rod in a
two-dimensional photonic crystal consisting of a square lattice of
dielectric rods in air with period a, radius 0.2a, and ε = 12 [22].)
Fig. 9 demonstrates that filter diagonalization is able to identify
the quality factor using almost an order of magnitude fewer time
steps than the curve fitting method. (Another possible technique to
identify resonant modes uses Padé approximants, which can also
achieve high accuracy from a short simulation [57,61].)

5.3. Frequency-domain solver

A common electromagnetic problem is to find the fields that
are produced in a geometry in response to a source at a sin-
gle frequency ω. In principle, the solution of such problems need
not involve time at all, but involve solving a linear equation
purely in the frequency domain [22, Appendix D]; this can be
achieved by many methods, such as finite-element methods [6–8],
boundary-element methods [9–12], or finite-difference frequency-
domain methods [62]. However, if one already has a full-featured
parallel FDTD solver, it is attractive to exploit that solver for
frequency-domain problems when they arise. The most straight-
forward approach is to simply run a simulation with a constant-
frequency source—after a long time, when all transient effects from
the source turn-on have disappeared, the result is the desired
frequency-domain response. The difficulty with this approach is
that a very long simulation may be required, especially if long-
lived resonant modes are present at nearby frequencies (in which
case a time 	 Q /ω is required to reach steady state). Instead,
we show how the FDTD timestep can be used to directly plug a
frequency-domain problem into an iterative linear solver, finding
the frequency-domain response in the equivalent of many fewer
timesteps while exploiting the FDTD code almost without modifi-
cation.

The central component of any FDTD algorithm is the time step:
an operation that advances the field by �t in time. In order to
extract a frequency-domain problem from this operation, we first

A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702 697
Fig. 10. Root-mean-square error in fields in response to a constant-frequency point source in vacuum (inset), for frequency-domain solver (red squares, adapted from Meep
time-stepping code) vs. time-domain method (blue circles, running until transients decay away). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
express the timestep as an abstract linear operation: if fn repre-
sents all of the fields (electric and magnetic) at time step n, then
(in a linear time-invariant structure) the time step operation can
be expressed in the form:

fn+1 = T̂0fn + sn, (7)

where T̂0 is the timestep operator with no sources and sn are the
source terms (currents) from that time step. Now, suppose that
one has a time-harmonic source sn = e−iωn�ts and wish to solve
for the resulting time-harmonic (steady state) fields fn = e−iωn�tf.
Substituting these into Eq. (7), we obtain the following linear equa-
tion for the field amplitudes f:

(
T̂0 − e−iω�t)f = −s. (8)

This can then be solved by an iterative method, and the key fact
is that iterative methods for Ax = b only require one to supply
a function that multiplies the linear operator A by a vector [63].
Here, A is represented by T̂0 − e−iω�t and hence one can simply
use a standard iterative method by calling the unmodified timestep
function from FDTD to provide the linear operator. To obtain the
proper right-hand side s, one merely needs to execute a single
timestep (7), with sources, starting from zero field f = 0. Since
in general this linear operator is not Hermitian (especially in the
presence of PML absorbing regions), we employ the BiCGSTAB-L
algorithm (a generalization of the stabilized biconjugate gradient
algorithm, where increasing the integer parameter L trades off in-
creased storage for faster convergence) [64,65].

This technique means that all of the features implemented in
our time-domain solver (not only arbitrary materials, subpixel av-
eraging, and other physical features, but also parallelization, vi-
sualization, and user-interface features) are immediately available
as a frequency-domain solver. To demonstrate the performance of
this frequency-domain solver over the straightforward approach
of simply running a long simulation until transients have disap-
peared, we computed the root-mean-square error in the field as
a function of the number of time steps (or evaluations of T̂0
by BiCGSTAB-L) for two typical simulations. The first simulation,
shown in Fig. 10, consists of a point source in vacuum surrounded
by PML (inset). The frequency-domain solver (red squares) shows
rapid, near-exponential convergence, while the error in the time-
domain method (blue circles) decreases far more gradually (in fact,
only polynomially). A much more challenging problem is to ob-
tain the frequency-domain response of a cavity (ring resonator)
with multiple long-lived resonant modes: in the time domain,
these modes require a long simulation (∼ Q) to reach steady
state, whereas in the frequency domain the resonances correspond
to poles (near-zero eigenvalues of A) that increase the condition
number and hence slow convergence [63]. Fig. 11 shows the re-
sults for a ring resonator cavity with multiple closely-spaced res-
onant modes, excited at one of the resonant frequencies (inset)—
although both frequency- and time-domain methods take longer to
converge than for the non-resonant case of Fig. 10, the advantage
of the frequency-domain’s exponential convergence is even more
clear. The convergence is accelerated in frequency domain by us-
ing L = 10 (green diamonds) rather than L = 2 (at the expense of
more storage). In time domain, the convergence is limited by the
decay of high-Q modes at other frequencies, and the impact of
these modes can be reduced by turning on the constant-frequency
source more gradually (magenta triangles, hyperbolic-tangent turn-
on of the source over 175 optical periods).

This is by no means the most sophisticated possible frequency-
domain solver. For example, we currently do not use any pre-
conditioner for the iterative scheme [63]. In two dimensions,
a sparse-direct solver may be far more efficient than an iterative
scheme [63]. The key point, however, is that programmer time
is much more expensive than computer time, and this technique
allows us to obtain substantial improvements in solving frequency-
domain problems with only minimal changes to an existing FDTD
program.

6. User interface and scripting

In designing the style of user interaction in Meep, we were
guided by two principles. First, in research or design one hardly
ever needs just one simulation—one almost always performs a
whole series of simulations for a class of related problems, explor-
ing the parameter dependencies of the results, optimizing some

698 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
Fig. 11. Root-mean-square error in fields in response to a constant-frequency point source exciting one of several resonant modes of a dielectric ring resonator (inset,
ε = 11.56), for frequency-domain solver (red squares, adapted from Meep time-stepping code) vs. time-domain method (magenta triangles, running until transients decay
away). Green diamonds show frequency-domain BiCGSTAB-L solver for five times more storage, accelerating convergence. Blue circles show time-domain method for a more
gradual turn-on of source, which avoids exciting long-lived resonances at other frequencies. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
output as a function of the input parameters, or looking at the
same geometry under a sequence of different stimuli. Second,
there is the Unix philosophy: “Write programs that do one thing
and do it well” [66]—Meep should perform electromagnetic sim-
ulations, while for additional functionality it should be combined
with other programs and libraries via standard interfaces like files
and scripts.

Both of these principles argue against the graphical CAD-
style interface common in commercial FDTD software. First, while
graphical interfaces provide a quick and attractive route to set-
ting up a single simulation, they are not so convenient for a
series of related simulations. One commonly encounters prob-
lems where the size/position of certain objects is determined by
the size/position of other objects, where the number of objects is
itself a parameter (such as a photonic-crystal cavity surrounded
by a variable number of periods [22]), where the length of the
simulation is controlled by a complicated function of the fields,
where one output is optimized as a function of some parameter,
and many other situations that become increasingly cumbersome
to express via a set of graphical tools and dialog boxes. Second,
we don’t want to write a mediocre CAD program—if we wanted
to use a CAD program, we would use a professional-quality one,
export the design to a standard interchange format, and write a
conversion program to turn this format into what Meep expects.
The most flexible and self-contained interface is, instead, to allow
the user to control the simulation via an arbitrary program. Meep
allows this style of interaction at two levels: via a low-level C++ in-
terface, and via a standard high-level scripting language (Scheme)
implemented by an external library (GNU Guile). The potential
slowness of the scripting language is irrelevant because all of the
expensive parts of the FDTD calculation are implemented in C/C++.

The high-level scripting interface to Meep is documented in de-
tail, with several tutorials, on the Meep web page (http://ab-initio.
mit.edu/meep), so we restrict ourselves to a single short example
in order to convey the basic flavor. This example, in Fig. 12, com-
putes the (2d) fields in response to a point source located within
a dielectric waveguide. We first set the size of the computational
cell to 16 × 8 (via geometry-lattice, so-called because it de-
termines the lattice vectors in the periodic case)—recall that the
interpretation of the unit of distance is arbitrary and up to the user
(it could be 16 μm × 8 μm, in which case the frequency units are
c/μm, or 16 mm × 8 mm with frequency units of c/mm, or any
other convenient distance unit). Let us call this arbitrary unit of
distance a. Then we specify the geometry within the cell as a list
of geometric objects like blocks, cylinders, etc.—in this case by a
single block defining the waveguide with ε = 12—or optionally by
an arbitrary user-defined function ε(x, y) (and μ, etc.). A layer of
PML is then specified around the boundaries with thickness 1; this
layer lies inside the computational cell and overlaps the waveguide,
which is necessary in order to absorb waveguide modes when they
reach the edge of the cell. We add a point source, in this case
an electric-current source J in the z-direction (sources of arbitrary
spatial profile can also be specified). The time-dependence of the
source is a sharp turn-on to a continuous-wave source cos(ωt) at
the beginning of the simulation; gradual turn-ons, Gaussian pulses,
or arbitrary user-specified functions of time can also be specified.
The frequency is 0.15 in units of c/a, corresponding to a vacuum
wavelength λ = a/0.15 (e.g. λ ≈ 6.67 μm if a = 1 μm). We set the
resolution to 10 pixels per unit distance (10 pixels/a), so that the
entire computational cell is 160 × 80 pixels, and then run for 200
time units (units of a/c), corresponding to 200 × 0.15 = 30 optical
periods. We output the dielectric function at the beginning, and
the Ez field at the end.

In keeping with the Unix philosophy, Meep is not a plotting
program; instead, it outputs fields and related data to the stan-
dard HDF5 format for scientific datasets [67], which can be read
by many other programs and visualized in various ways. (We also
provide a way to effectively “pipe” the HDF5 output to an exter-
nal program within Meep: for example, to output the HDF5 file,
convert it immediately to an image with a plotting program, and
then delete the HDF5 file; this is especially useful for producing
animations consisting of hundreds of frames.)

Another important technique to maintain flexibility is that of
higher-order functions [68]: wherever it is practical, our functions

http://ab-initio.mit.edu/meep
http://ab-initio.mit.edu/meep

A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702 699
Fig. 12. A simple Meep example showing the Ez field in a dielectric waveguide (ε = 12) from a point source at a given frequency. A plot of the resulting field (blue/white/red =
positive/zero/negative) is in the background, and in the foreground is the input file in the high-level scripting interface (the Scheme language). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
take functions as arguments instead of (or in addition to) numbers.
Thus, for example, instead of specifying special input codes for all
possible source distributions in space and time, we simply allow
a user-defined function to be used. More subtly, the arguments
output-epsilon and output-efield-z to the run-until
function in Fig. 12 are actually functions themselves: we allow
the user to pass arbitrary “step functions” to run-until that are
called after every FDTD timestep and which can perform arbitrary
computations on the fields as desired (or halt the computation if a
desired condition is reached). The output-efield-z is simply
a predefined step function that outputs Ez . These step-functions
can be modified by transformation functions like at-end, which
take step functions as arguments and return a new step function
that only calls the original step functions at specified times (at
the end of the simulation, or the beginning, or at certain inter-
vals, for example). In this way, great flexibility in the output and
computations is achieved. One can, for example, output a given
field component only at certain time intervals after a given time,
and only within a certain subvolume or slice of the computational
cell, simply by composing several of these transformations. One
can even output an arbitrary user-defined function of the fields in-
stead of predetermined components.

There is an additional subtlety when it comes to field output,
because of the Yee lattice in which different field components are
stored at different points; presented in this way to the user, it
would be difficult to perform post-processing involving multiple
field components, or even to compare plots of different field com-
ponents. As mentioned in Section 3 and again in Section 7.2, there-
fore, the field components are automatically interpolated from the
Yee grid onto a fixed “centered” grid in each pixel when exported
to a file.

Although at a simplistic level the input format can just be con-
sidered as a file format with a lot of parentheses, because Scheme
is a full-fledged programming language one can control the simu-
lation in essentially arbitrary ways. Not only can one write loops
and use arithmetic to define the geometry and the relationships
between the objects or perform parameter sweeps, but we also ex-
pose external libraries for multivariable optimization, integration,
root-finding, and other tasks in order that they can be coupled
with simulations.
Parallelism is completely transparent to the user: exactly the
same input script is fed to the parallel version of Meep (written
with the MPI message-passing standard for distributed-memory
parallelism [69]) as to the serial version, and the distribution of
the data across processors and the collection of results is handled
automatically.

7. Abstraction versus performance

In an FDTD simulation, essentially just one thing has to be fast:
inner loops over all the grid points or some large fraction thereof.
Everything else is negligible in terms of computation time (but not
programmer time!), so it can use high-level abstractions without
penalty—for example, the use of a Scheme interpreter as the user
interface has no performance consequences for a typical computa-
tion, because the inner loops are not written in Scheme.4 For these
inner loops, however, there is a distinct tension between abstrac-
tion (or simplicity) and performance, and in this section we discuss
some of the tradeoffs that result from this tension and the choices
that have been made in Meep.

The primacy of inner loops means that some popular principles
of abstraction must be discarded. A few years ago, a colleague of
ours attempted to write a new FDTD program in textbook object-
oriented C++ style: every pixel in the grid would be an object, and
every type of material would be a subclass overriding the neces-
sary timestepping and field-access operations. Timestepping would
consist of looping over the grid, calling some “step” method of
each object, so that objects of different materials (magnetic, dielec-
tric, nonlinear, etc.) would dynamically apply the corresponding
field-update procedures. The result of this noble experiment was
a working program but a performance failure, many times slower
than the aging Fortran software it was intended to replace: the
performance overhead of object dereferencing, virtual method dis-

4 The exception to this rule is when the user supplies a Scheme function and asks
that it be evaluated for every grid point, for example to integrate some function
of the fields. If this is done frequently during the simulation, it is slow; in these
circumstances, however, the user can replace the Scheme function with one written
in C/C++ if needed. This is rare because most such functions that might be used
frequently during a simulation, such as energy or flux, are already supplied in C/C++
within Meep.

700 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
patch, and function calls in the inner loop overwhelmed all other
considerations. In Meep, each field’s components are stored as sim-
ple linear arrays of floating-point numbers in row-major (C) order
(parallel-array data structures worthy of Fortran 66), and there are
separate inner loops for each type of material (more on this be-
low). In a simple experiment on a 2.8 GHz Intel Core 2 CPU, merely
moving the if statements for the different material types into
these inner loops decreased Meep’s performance by a factor of two
in a typical 3d calculation and by a factor of six in 2d (where the
calculations are simpler and hence the overhead of the condition-
als is more significant). The cost of the conditionals, including the
cost of mispredicted branches and subsequent pipeline stalls [70]
along with the frustration of compiler unrolling and vectorization,
easily overwhelmed the small cost of computing, e.g., ∇ × H at a
single point.

7.1. Timestepping and cache tradeoffs

One of the dominant factors in performance on modern com-
puter systems is not arithmetic, but memory: random memory
access is far slower than arithmetic, and the organization of mem-
ory into a hierarchy of caches is designed to favor locality of ac-
cess [70]. That is, one should organize the computation so that
as much work as possible is done with a given datum once it is
fetched (temporal locality) and so that subsequent data that are
read or written are located nearby in memory (spatial locality).
The optimal strategies to exploit both kinds of locality, however,
appear to lead to sacrifices of abstraction and code simplicity so
severe that we have chosen instead to sacrifice some potential per-
formance in the name of simplicity.

As it is typically described, the FDTD algorithm has very lit-
tle temporal locality: the field at each point is advanced in time by
�t , and then is not modified again until all the fields at every other
point in the computational cell have been advanced. In order to
gain temporal locality, one must employ asynchronous timestepping:
essentially, points in small regions of space are advanced several
steps in time before advancing points far away, since over a short
time interval the effects of far-away points cannot be felt. A de-
tailed analysis of the characteristics of this problem, as well as a
beautiful “cache-oblivious” algorithm that automatically exploits a
cache of any size for grids of any dimensionality, is described in
Ref. [71]. On the other hand, an important part of Meep’s usability
is the abstraction that the user can perform arbitrary computations
or output using the fields in any spatial region at any time, which
seems incompatible with the fields at different points in space be-
ing out-of-sync until a predetermined end of the computation. The
bookkeeping difficulty of reconciling these two viewpoints led us
to reject the asynchronous approach, despite its potential benefits.

However, there may appear to be at least a small amount of
temporal locality in the synchronous FDTD algorithm: first B is ad-
vanced from ∇ × E, then H is computed from B and μ, then D is
advanced from ∇ × H, then E is computed from D and ε. Since
most fields are used at least once after they are advanced, surely
the updates of the different fields can be merged into a single loop,
for example advancing D at a point and then immediately com-
puting E at the same point—the D field need not even be stored.
Furthermore, since by merging the updates one is accessing sev-
eral fields around the same point at the same time, perhaps one
can gain spatial locality by interleaving the data, say by storing an
array of (E,H, ε,μ) tuples instead of separate arrays. Meep does
not do either of these things, however, for two reasons, the first
of which is more fundamental. As is well known, one cannot eas-
ily merge the B and H updates with the D and E updates at the
same point, because the discretized ∇ × operation is nonlocal (in-
volves multiple grid points)—this is why one normally updates H
everywhere in space before updating D from ∇ × H, because in
computing ∇ × H one uses the values of H at different grid points
and all of them must be in sync. A similar reasoning, however,
applies to updating E from D and H from B, once the possibility
of anisotropic materials is included—because the Yee grid stores
different field components at different locations, any accurate han-
dling of off-diagonal susceptibilities must also inevitably involve
fields at multiple points (as in Ref. [39]). To handle this, D must be
stored explicitly and the update of E from D must take place af-
ter D has been updated everywhere, in a separate loop. And since
each field is updated in a separate loop, the spatial-locality moti-
vation to merge the field data structures rather than using parallel
arrays is largely removed.

Of course, not all simulations involve anisotropic materials—
although they appear even in many simulations with nominally
isotropic materials thanks to the subpixel averaging discussed in
Section 3—but this leads to the second practical problem with
merging the E and D (or H and B) update loops: the combina-
torial explosion of the possible material cases. The update of D
from ∇ × H must handle 16 possible cases, each of which is a sep-
arate loop (see above for the cost of putting conditionals inside the
loops): with or without PML (4 cases, depending upon the number
of PML conductivities and their orientation relative to the field),
with or without conductivity, and with the derivative of two H
components (3d) or only one H component (2d TE polarization).
The update of E from D involves 12 cases: with or without PML
(2 cases, distinct from those in the D update), the number of off-
diagonal ε−1 components (3 cases: 0, 1, or 2), and with or without
nonlinearity (2 cases). If we attempted to join these into a sin-
gle loop, we would have 16 × 12 = 192 cases, a code-maintenance
headache. (Note that the multiplicity of PML cases comes from the
fact that, including the corners of the computational cell, we might
have 0 to 3 directions of PML, and the orientation of the PML di-
rections relative to a given field component matters greatly.)

The performance penalty of separate E and D (or H and B)
updates appears to be modest. Even if, by somehow merging the
loops, one assumes that the time to compute E = ε−1D could be-
come zero, benchmarking the relative time spent in this operation
indicates that a typical 3d transmission calculation would be ac-
celerated by only around 30% (and less in 2d).

7.2. The loop-in-chunks abstraction

Finally, let us briefly mention a central abstraction that, while
not directly visible to end-users of Meep, is key to the efficiency
and maintainability of large portions of the software (field output,
current sources, flux/energy computations and other field integrals,
and so on). The purpose of this abstraction is to mask the com-
plexity of the partitioning of the computational cell into overlap-
ping chunks connected by symmetries, communication, and other
boundary conditions as described in Section 2.

Consider the output of the fields at a given timestep to an HDF5
datafile. Meep provides a routine get-field-pt that, given a
point in space, interpolates it onto the Yee grid and returns a de-
sired field component at that point. In addition to interpolation,
this routine must also transform the point onto a chunk that is
actually stored (using rotations, periodicity, etc.) and communicate
the data from another processor if necessary. If the point is on
a boundary between two chunks, the interpolation process may
involve multiple chunks, multiple rotations, etc., and communica-
tions from multiple processors. Because this process involves only
a single point, it is not easily parallelizable. Now, to output the
fields everywhere in some region to a file, one approach is to sim-
ply call get-field-pt for every point in a grid for that region
and output the results, but this turns out to be tremendously slow
because of the repeated transformations and communications for
every single point. We nevertheless want to interpolate fields for

A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702 701
output rather than dumping the raw Yee grid, because it is much
easier for post-processing if the different field components are in-
terpolated onto the same grid; also, to maintain transparency of
features like symmetry one would like to be able to output the
whole computational cell (or an arbitrary subset) even if only a
part of it is stored. Almost exactly the same problems arise for in-
tegrating things like flux E × H or energy or user-defined functions
of the fields (noting that functions combining multiple field com-
ponents require interpolation), and also for implementing volume
(or line, or surface) sources which must be projected onto the grid
in some arbitrary volume.

One key to solving this difficulty is to realize that, when the
field in some volume V is needed (for output, integration, and so
on), the rotations, communications, etc. for points in V are iden-
tical for all the points in the intersection of V with some chunk
(or one of its rotations/translations). The second is to realize that,
when interpolation is needed, there is a particular grid for which
interpolation is easy: for owned points of the centered grid (Sec-
tion 2) lying at the center of each pixel, it is always possible to
interpolate from fields on any Yee grid without any inter-chunk
communication and by a simple equal-weight averaging of at most
2d points in d dimensions.

The combination of these two observations leads to the loop-
in-chunks abstraction. Given a (convex rectilinear) volume V and
a given grid (either centered, or one of the Yee-field grids),
it computes the intersection of all the chunks and their rota-
tions/translations with V . For each intersection it invokes a caller-
specified function, passing the portion of the chunk, the necessary
rotations (etc.) of the fields, and interpolation weights (if needed,
for the boundary of V). That function then processes the specified
portion of the chunk (for example, outputting it to the correspond-
ing portion of a file, or integrating the desired fields). All of this
can proceed in parallel (with each processor considering only those
chunks stored locally). This is (relatively) fast because the rotations,
interpolations, and so on are computed only once per chunk inter-
section, while the inner loop over all grid points in each chunk can
be as tight as necessary. Moreover, all of the rather complicated
and error-prone logic involved in computing V ’s intersection with
the chunks (e.g., special care is required to ensure that each con-
ceptual grid point is processed exactly once despite chunk overlaps
and symmetries) is localized to one place in the source code; field
output, integration, sources, and other functions of the fields are
isolated from this complexity.

8. Concluding remarks

We have reviewed in this paper a number of the unusual imple-
mentation details of Meep that distinguish our software package
from standard textbook FDTD methods. Beginning with a discus-
sion of the fundamental structural unit of chunks that constitute
the Yee grid and enable parallelization: we provided an overview
of Meep’s core design philosophy of creating an illusion of con-
tinuous space and time for inputs and outputs; we explained and
motivated the somewhat unusual design intricacies of nonlinear
materials and PMLs; we discussed important aspects of Meep’s
computational methods for flux spectra and resonant modes; we
demonstrated the formulation of a frequency-domain solver requir-
ing only minimal modifications to the underlying time-stepping
algorithm. In addition to the inner workings of Meep’s internal
structure, we reviewed how such features are accessible to users
via an external scripting interface.

We believe that a free/open-source, full-featured FDTD pack-
age like Meep can play a vital role in enabling new research in
electromagnetic phenomena. Not only does it provide a low bar-
rier to entry for standard FDTD simulations, but the simplicity of
the FDTD algorithm combined with access to the source code of-
fers an easy route to investigate new physical phenomena coupled
with electromagnetism. For example, we have colleagues working
on coupling multi-level atoms to electromagnetism within Meep
for modeling lasing and saturable absorption, adapting published
techniques from our and other groups [16–20], but also including
new physics such as diffusion of excited gases. Other colleagues
have modified Meep for modeling gyromagnetic media in order to
design new classes of “one-way” waveguides [72]. Meep is even
being used to simulate the quantum phenomena of Casimir forces
(from quantum vacuum fluctuations, which can be computed from
classical Green’s functions) [73,74]—in fact, this was possible with-
out any modifications of the Meep code due to the flexibility of
Meep’s scripting interface. We hope that other researchers, with
the help of the understanding of Meep’s architecture that this pa-
per provides, will be able to adapt Meep to future phenomena that
we have not yet envisioned.

Acknowledgements

This work was supported in part by the Materials Research
Science and Engineering Center program of the National Science
Foundation under Grant Nos. DMR-9400334 and DMR-0819762, by
the Army Research Office through the Institute for Soldier Nan-
otechnologies under contract DAAD-19-02-D0002, and also by Dr.
Dennis Healy of DARPA MTO under award N00014-05-1-0700 ad-
ministered by the Office of Naval Research. We are also grateful
to A.W. Rodriguez and A.P. McCauley for their efforts to general-
ize Meep for quantum-Casimir problems, S.L. Chua for his work on
dispersive and multi-level materials, and Y. Chong for early support
in Meep for gyrotropic media.

References

[1] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference
Time-Domain Method, 3rd ed., Artech, Norwood, MA, 2005.

[2] K.S. Kunz, R.J. Luebbers, The Finite-Difference Time-Domain Method for Elec-
tromagnetics, CRC Press, Boca Raton, 1993.

[3] D.M. Sullivan, Electromagnetic Simulation Using the FDTD Method, Wiley–IEEE
Press, New York, 2000.

[4] A. Elsherbeni, V. Demir, The Finite Difference Time Domain Method for Elec-
tromagnetics: With MATLAB Simulations, SciTech, Rayleigh, NC, 2009.

[5] W. Yu, R. Mittra, T. Su, Y. Liu, X. Yang, Parallel Finite-Difference Time-Domain
Method, Artech House, Norwood, MA, 2006.

[6] M.N. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed., CRC, 2000.
[7] J. Jin, The Finite Element Method in Electromagnetics, 2nd ed., Wiley–IEEE

Press, 2002.
[8] K. Yasumoto (Ed.), Electromagnetic Theory and Applications for Photonic Crys-

tals, CRC, 2005.
[9] S. Rao, D. Wilton, A. Glisson, Electromagnetic scattering by surfaces of arbitrary

shape, IEEE Trans. Antennas and Propagation 30 (3) (1982) 409–418.
[10] K. Umashankar, A. Taflove, S. Rao, Electromagnetic scattering by arbitrary

shaped three-dimensional homogeneous lossy dielectric objects, IEEE Trans.
Antennas and Propagation 34 (6) (1986) 758–766.

[11] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids, Wiley,
1999.

[12] W.C. Chew, J.-M. Jin, E. Michielssen, J. Song (Eds.), Fast and Efficient Algorithms
in Computational Electromagnetics, Artech House, 2000.

[13] S.G. Johnson, M. Ibanescu, M.A. Skorobogatiy, O. Weisberg, J.D. Joannopoulos,
Y. Fink, Perturbation theory for Maxwell’s equations with shifting material
boundaries, Phys. Rev. E 65 (2002) 066611.

[14] L. Zhang, J. Lee, A. Farjadpour, J. White, S. Johnson, A novel boundary element
method with surface conductive absorbers for 3-D analysis of nanophoton-
ics, in: Microwave Symposium Digest, 2008 IEEE MTT-S International, 2008,
pp. 523–526.

[15] S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for
Maxwell’s equations in a planewave basis, Opt. Express 8 (3) (2001) 173–190.

[16] R.W. Ziolkowski, J.M. Arnold, D.M. Gogny, Ultrafast pulse interactions with two-
level atoms, Phys. Rev. A 52 (4) (1995) 3082–3094.

[17] A.S. Nagra, R.A. York, FDTD analysis of wave propagation in nonlinear absorbing
and gain media, IEEE Trans. Antennas and Propagation 46 (3) (1998) 334–340.

[18] S.-H. Chang, A. Taflove, Finite-difference time-domain model of lasing action
in a four-level two-electron atomic system, Opt. Express 12 (16) (2004) 3827–
3833.

702 A.F. Oskooi et al. / Computer Physics Communications 181 (2010) 687–702
[19] Y. Huang, S.-T. Ho, Computational model of solid-state, molecular, or atomic
media for FDTD simulation based on a multi-level multi-electron system gov-
erned by Pauli exclusion and Fermi–Dirac thermalization with application to
semiconductor photonics, Opt. Express 14 (8) (2006) 3569–3587.

[20] P. Bermel, E. Lidorikis, Y. Fink, J.D. Joannopoulos, Active materials embedded
in photonic crystals and coupled to electromagnetic radiation, Phys. Rev. B 73
(2006) 165125.

[21] J.D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1998.
[22] J.D. Joannopoulos, S.G. Johnson, R.D. Meade, J.N. Winn, Photonic Crystals: Mold-

ing the Flow of Light, 2nd ed., Princeton Univ. Press, 2008.
[23] K.S. Yee, Numerical solution of initial boundary value problems involving

Maxwells Equations in isotropic media, IEEE Trans. Antennas and Propaga-
tion 14 (3) (1966) 302–307.

[24] M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differen-
tial equations, J. Comput. Phys. 53 (1984) 484–512.

[25] I.S. Kim, W.J.R. Hoefer, A local mesh refinement algorithm for the time domain-
finite difference method using Maxwell’s curl equations, IEEE Trans. Microwave
Theory Tech. 38 (6) (1990) 812–815.

[26] S.S. Zivanovic, K.S. Yee, K.K. Mei, A. Subgridding, Method for the time-domain
finite-difference method to solve Maxwell’s equations, IEEE Trans. Microwave
Theory Tech. 39 (3) (1991) 471–479.

[27] M. Okoniewski, E. Okoniewska, M.A. Stuchly, Three-dimensional subgridding
algorithm for FDTD, IEEE Trans. Antennas and Propagation 45 (3) (1997) 422–
429.

[28] C. Lin, L. Snyder, Principles of Parallel Programming, Addison–Wesley, 2008.
[29] T. Inui, Y. Tanabe, Y. Onodera, Group Theory and Its Applications in Physics,

Springer-Verlag, Terlos, 1996.
[30] U. Trottenberg, C.W. Oosterlee, A. Schuller, Multigrid, Academic Press, 2000.
[31] L. Landau, L. Pitaevskii, E. Lifshitz, Electrodynamics of Continuous Media, 2nd

ed., Butterworth–Heinemann, 1984.
[32] C. Luo, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, Cerenkov radiation in pho-

tonic crystals, Science 299 (2003) 368–371.
[33] A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Joannopoulos,

S. Johnson, G. Burr, Improving accuracy by sub-pixel smoothing in the finite-
difference time domain, Opt. Lett. 31 (2006) 2972–2974.

[34] A.F. Oskooi, C. Kottke, S.G. Johnson, Accurate finite-difference time-domain sim-
ulation of anisotropic media by subpixel smoothing, Opt. Lett. 34 (18) (2009)
2778–2780.

[35] A. Ditkowski, K. Dridi, J.S. Hesthaven, Convergent Cartesian grid methods for
Maxwell’s equations in complex geometries, J. Comput. Phys. 170 (2001) 39–
80.

[36] C. Kottke, A. Farjadpour, S.G. Johnson, Perturbation theory for anisotropic di-
electric interfaces, and application to subpixel smoothing of discretized numer-
ical methods, Phys. Rev. E 77 (2008) 036611.

[37] S. Dey, R. Mittra, A conformal finite-difference time-domain technique for
modeling cylindrical dielectric resonators, IEEE Trans. Microwave Theory
Tech. 47 (9) (1999) 1737–1739.

[38] R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, Accu-
rate theoretical analysis of photonic band-gap materials, Phys. Rev. B 48 (1993)
8434–8437;
S.G. Johnson, Phys. Rev. B 55 (1997) 15942, Erratum.

[39] G. Werner, J. Cary, A stable FDTD algorithm for non-diagonal anisotropic di-
electrics, J. Comput. Phys. 226 (2007) 1085–1101.

[40] P. Mezzanotte, L. Roselli, R. Sorrentino, A. Simple, Way to model curved
metal boundaries in FDTD algorithm avoiding staircase approximation, IEEE Mi-
crowave Guided Wave Lett. 5 (8) (1995) 267–269.

[41] J. Anderson, M. Okoniewski, S.S. Stuchly, Practical 3-D contour/staircase treat-
ment of metals in FDTD, IEEE Microwave Guided Wave Lett. 6 (3) (1996) 146–
148.

[42] A. Deinega, I. Valuev, Subpixel smoothing for conductive and dispersive media
in the finite-difference time-domain method, Opt. Lett. 32 (23) (2007) 3429–
3431.

[43] P. Leung, S. Liu, K. Young, Completeness and time-independent perturbation
of the quasinormal modes of an absorptive and leaky cavity, Phys. Rev. A 49
(1994) 3982–3989.

[44] S.G. Johnson, M.L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, J.D. Joannopoulos,
Roughness losses and volume-current methods in photonic-crystal waveguides,
Appl. Phys. B 81 (2005) 283–293.

[45] A.F. Oskooi, L. Zhang, Y. Avniel, S.G. Johnson, The failure of perfectly
matched layers, and towards their redemption by adiabatic absorbers, Opt. Ex-
press 16 (15) (2008) 11376–11392.
[46] Q.H. Liu, J.Q. He, Quasi-PML for waves in cylindrical coordinates, Microwave
and Optical Tech. Lett. 19 (2) (1998) 107–111.

[47] N. Bloembergen, Nonlinear Optics, W.A. Benjamin, New York, 1965.
[48] G.P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Academic Press, San Diego, 2001.
[49] A. Rodriguez, M. Soljačić, J.D. Joannopoulos, S.G. Johnson, χ(2) and χ(3) har-

monic generation at a critical power in inhomogeneous doubly resonant cavi-
ties, Opt. Express 15 (12) (2007) 7303–7318.

[50] R.W. Boyd, Nonlinear Optics, Academic Press, London, UK, 1992.
[51] J. Baker, A. George, P. Graves-Morris, Padé Approximants, 2nd ed., Cambridge

University Press, 1996.
[52] F.L. Teixeira, W.C. Chew, Systematic derivation of anisotropic PML absorbing

media in cylindrical and spherical coordinates, IEEE Microwave Guided Wave
Lett. 7 (11) (1997) 371–373.

[53] J.-Q. He, Q.-H. Liu, A nonuniform cylindrical FDTD algorithm with improved
PML and quasi-PML absorbing boundary conditions, IEEE Trans. Geoscience Re-
mote Sensing 37 (2) (1999) 1066–1072.

[54] D.H. Bailey, P.N. Swartztrauber, A. Fast, Method for the numerical evaluation of
continuous Fourier and Laplace transforms, SIAM J. Sci. Comput. 15 (5) (1994)
1105–1110.

[55] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd
ed., MIT Press, 2009.

[56] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, 3rd ed.,
Prentice-Hall, 2009.

[57] W.-H. Guo, W.-J. Li, Y.-Z. Huang, Computation of resonant frequencies and
quality factors of cavities by FDTD technique and Padé approximation, IEEE
Microwave and Wireless Comp. Lett. 11 (5) (2001) 223–225.

[58] S. Cabay, D.-K. Choi, Algebraic computations of scaled Padé fractions, SIAM J.
Comput. 15 (1) (1986) 243–270.

[59] A. Rodriguez, M. Ibanescu, J.D. Joannopoulos, S.G. Johnson, Disorder-immune
confinement of light in photonic-crystal cavities, Opt. Lett. 30 (2005) 3192–
3194.

[60] V.A. Mandelshtam, H.S. Taylor, Harmonic inversion of time signals and its ap-
plications, J. Chem. Phys. 107 (17) (1997) 6756–6769.

[61] S. Dey, R. Mittra, Efficient computation of resonant frequencies and quality
factors of cavities via a combination of the finite-difference time-domain tech-
nique and the Padé approximation, IEEE Microwave Guided Wave Lett. 8 (12)
(1998) 415–417.

[62] A. Christ, H.L. Hartnagel, Three-dimensional finite-difference method for
the analysis of microwave-device embedding, IEEE Trans. Microwave Theory
Tech. 35 (8) (1987) 688–696.

[63] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine, H.V. der Vorst, Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994.

[64] G.L.G. Sleijpen, D.R. Fokkema, BiCGSTAB(L) for linear equations involving un-
symmetric matrices with complex spectrum, Electron. Trans. Numer. Anal. 1
(1993) 11–32.

[65] G.L.G. Sleijpen, H.A. van der Vorst, D.R. Fokkema, BiCGstab(L) and other hybrid
Bi-CG methods, Numer. Algorithms 7 (1994) 75–109.

[66] P.H. Salus, A. Quarter, Century of UNIX, Addison–Wesley, Reading, MA, 1994.
[67] M. Folk, R.E. McGrath, N. Yeager, HDF: An update and future directions, in:

Proc. 1999 Geoscience and Remote Sensing Symposium (IGARSS), vol. 1, IEEE
Press, Hamburg, Germany, 1999, pp. 273–275.

[68] H. Abelson, G.J. Sussman, Structure and Interpretation of Computer Programs,
MIT Press, Cambridge, MA, 1985.

[69] T.M. Forum, MPI: A Message Passing Interface, in: Supercomputing ’93, Port-
land, OR, 1993, pp. 878–883.

[70] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach,
3rd ed., Elsevier, San Francisco, CA, 2003.

[71] M. Frigo, V. Strumpen, The memory behavior of cache oblivious stencil compu-
tations, J. Supercomputing 39 (2) (2007) 93–112.

[72] Z. Wang, Y.D. Chong, J.D. Joannopoulos, M. Soljačić, Reflection-free one-way
edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett. 100 (2008)
013905.

[73] A.W. Rodriguez, A.P. McCauley, J.D. Joannopoulos, S.G. Johnson, Casimir forces
in the time domain: Theory, Phys. Rev. A 80 (2009) 012115.

[74] A.P. McCauley, A.W. Rodriguez, J.D. Joannopoulos, S.G. Johnson, Casimir forces
in the time domain: II. Applications, arXiv.org e-Print archive, arXiv:0906.5170,
2009.

	Meep: A flexible free-software package for electromagnetic simulations by the FDTD method
	Introduction
	Grids and boundary conditions
	Coordinates and grids
	Grid chunks and owned points
	Boundary conditions and symmetries

	Interpolation and the illusion of continuity
	Materials
	Nonlinear materials
	Absorbing boundary layers: PML, pseudo-PML, and quasi-PML

	Enabling typical computations
	Computing flux spectra
	Analyzing resonant modes
	Frequency-domain solver

	User interface and scripting
	Abstraction versus performance
	Timestepping and cache tradeoffs
	The loop-in-chunks abstraction

	Concluding remarks
	Acknowledgements
	References

