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ABSTRACT

The finite–difference time–domain (FDTD) approach is now widely used to simulate the expected performance of
photonic crystal, plasmonic, and other nanophotonic devices. Unfortunately, given the computational demands
of full 3–D simulations, researchers can seldom bring this modeling tool to bear on more than a few isolated
design points. Thus 3-D FDTD—as it stands now—is merely a verification rather than a design optimization

tool.

Over the long term, continuing improvements in available computing power can be expected to bring struc-
tures of current interest within general reach. In the meantime, however, many researchers appear to be exploring
alternative modeling techniques, trading off flexibility of approach in return for more rapid turnaround on the
devices of specific interest to them. In contrast, we are trying to improve the efficiency of 3–D FDTD by reducing
its computational expense without sacrificing accuracy. We believe that these two approaches are completely
complementary — even with vast amounts of computational power, any real–world system will still require a
modular approach to modeling, spanning from the nanometer to the millimeter scale or beyond.
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1. INTRODUCTION

The advantages of FDTD are numerous [1–3] — its disadvantages can be boiled down to a single statement:
in order to be confident you will get the right answer, 3–D FDTD simulations must be large and slow. Large
simulations come from the need to discretize at a fine spatial scale, both to follow device features as well as
to avoid error (from “numerical dispersion” [1]). The community of researchers using FDTD for microwave
modeling has known of these problems for some time. Many of their solutions require near-reinvention of the
FDTD formulation, at the cost of simplicity and stability. But some are quite simple, and can be easily applied
to or modified for nanophotonics modeling. We have previously shown that by using fairly straightforward
sub-cell methods [1–5] and simple corrections for numerical dispersion [1–3, 6], accurate reflectivity coefficients
and photonic crystal band–diagrams can be produced at significantly coarser gridding than would otherwise be
possible [2, 3].

Slow simulations come from a combination of simulation size (many grid points to be updated every timestep),
the small timestep, and the need to run simulations for many optical cycles to attain high frequency resolution.
Because the timestep scales with the spatial step, the coarser gridding described in the previous paragraph
helps with both of the first two items. However, the frequency resolution of a nanophotonic device’s simulated
spectral response will still scale inversely with the time–span of the simulation. And it is this frequency resolution
which is of critical importance when using FDTD to study photonic crystal devices such as resonators [7] or
waveguides [8].

However, during optimization we may not need the same high–resolution spectrum that one would want
for design verification or for publication, as long as the design metric is evaluated accurately leading to the
“right” next design iteration. In addition, the a priori knowledge that we are searching for an isolated sharp
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Figure 1. Dispersion diagram (normalizedω vs. normalized
k) for a 2–D square lattice of high–index (ǫ=8.9) cylindrical rods
(of radius r = 0.2a) in air (ǫ=1.0), for TM polarization only.
Insets show the real–space and reciprocal lattices. The frequency
is in units of 2πc/a; the spatial frequency is normalized to the
symmetry pointsΓ (kx = ky = 0), X (kx = π/a, ky = 0), and
M (kx = ky = π/a). Two dotted boxes show regions of the
dispersion diagram that are discussed in detail by Figures 5(near
theX point), and 6 (near theM point).
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Figure 2. Dispersion diagram (TE polarization only) for
the 2–D triangular lattice of air holes (r/a=.48) in dielectric
(ǫ=13), along with the real–space and reciprocal lattices. The
unit cell used here is the true primitive unit cell (the rhombus
shown in the inset), rather than the larger rectangle which
would lead to folded band–structure.

frequency resonance can be used to obtain information about that resonance even in the absence of good frequency
resolution. In fact, something like this is already widely done in the analysis of high–Q photonic crystal resonators,
where researchers gauge the Q from the power lost by the device rather than from the frequency spectrum [7].

In this paper, we focus on (and try to quantify) the tradeoffs between the accurate determination of resonance
frequencies using such shortcuts, and the duration (and size) of the resultant FDTD simulations, for common
photonic bandgap structures such as waveguides and resonators. We will then try to use these computationally
lighter 3-D FDTD simulations to demonstrate such design optimization on the intrinsic out–of–plane radiation
losses in photonic crystal waveguides.

2. NUMERICAL DISPERSION AND SUB–CELL METHODS

The FDTD algorithm is capable of arbitrarily low error in simulating Maxwell’s Equations as the grid spacing
approaches zero [1]. However, for reasonable choices of grid spacing, there are two main sources of error:
numerical dispersion and staircasing error. To demonstrate this, we will use two band–structure diagrams as
computed by FDTD and compared to accepted results of the plane–wave method. The TM band-diagram for
a 2–D square lattice of dielectric pillars in air is shown in Figure 1. Figure 2 shows the TE band–diagram,
real–space lattice, and irreducible Brillouin zone for the triangular lattice of air holes, as calculated by both the
plane–wave method [9] and by FDTD.

The reason for the increasing error at high normalized frequencies in the dispersion diagrams calculated by
FDTD is that the number of cells per effective wavelength is getting smaller for these frequencies. For instance,
even at the uppermost normalized frequency of ωa/2πc = a/λ0 = 0.8 from Figure 2, with the grid cell–spacing
used for these simulations of 30 cells/a it would seem that there should be at least 37.5 cells per wavelength.
According to Figure 4.4 in Reference [1], this sampling would seem to suffice. However, given the high index of
the dielectric material (nearly 3), the number of cells per wavelength in the material is much lower (around 13).
As a result, numerical dispersion starts to have a noticeable effect already at these frequencies.

To correct for numerical dispersion, we can apply the simple correction suggested in Reference [1], adjusting
the permittivity and permeability of free space, ε0 and µ0, to force a particular frequency and angle to propagate
at exactly the speed of light, c, within the FDTD grid. As suggested in Reference [6], we apply a different
adjustment to each axis to allow for non–square/non–cubic grid–spacing. However, in contrast to the procedure



detailed in Reference [6], we choose to solve an index–adjusted version of Equation 4.5 from Reference [1],

[

n

c∆t
sin

(

π c∆t

λ0

)]2

=

[

1

∆x
sin

(

π nαx ∆x

λ0

)]2

+

[

1

∆y
sin

(

π nαy ∆y

λ0

)]2

+

[

1

∆z
sin

(

π nαz ∆z

λ0

)]2

, (1)

for the values of αx,y,z in a two–step process. Here for readability, we have written out ω in terms of the vacuum
wavelength λ0. First, we remove the effects of different grid–spacings by solving Equation 1 for the three cartesian
directions, resulting in
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and the equivalent for y and z. At this point, the numerical dispersion is corrected such that the speed of
light is identically c along any of the 3 coordinate axes, and is faster at all intermediate angles. It is then
straightforward to follow the iterative Newton’s method [1] to compute the effective phase velocity at any of
these intermediate angles, and to then use this incorrect speed of light to further adjust αx,y,z as in Equation 4.69
of Reference [1]. Thus the numerical dispersion can be exactly compensated out at this particular angle (and
wavelength). Alternatively, an angle can be picked which minimizes the numerical dispersion over a particular
range of nearby angles, or which minimizes the worst–case numerical dispersion.

The improvements due to the compensation of numerical dispersion in the accuracy with which photonic
crystal band–diagrams can be computed are not particularly large [3]. This is inherent in the variation of the
speed of light within the grid at frequencies and angles that are not close to the set-point that was chosen for
compensation in this simple approach.

In contrast with the subtle and imperfect improvements offered by compensating numerical dispersion, we
have found that the correction of staircasing errors can offer a significant and noticeable improvement [3]. For
instance, in Figure 3 we plot the first two bands of the triangular lattice dispersion diagram at the K point
(spatial frequency kx = 4π/3a, ky = 0), as a function of the size of the cylindrical air hole. Four plots are shown:
parts (a) and (b) are for the regular FDTD algorithm (e.g., with staircasing error) for both moderate (20 cells/a)
and coarse gridding (12 cells/a); parts (c) and (d) show the same two bands at the same grid–spacings, but when
a sub–cell method is used to compute an effective dielectric constant for every E–field component near a material
interface (e.g., two such values per cell in these TE simulations). Such a sub–cell method can be thought of as
simply translating effective–medium theory for the Yee lattice.

For photonic crystal structures, sub–cell methods have two important benefits: first, the absolute determi-
nation of resonance frequencies becomes more accurate, as can be seen by comparing part (a) of Figure 3 with
part (c). This arises because staircasing often causes the amount of high– and low–index material to differ from
the intended values (an effect which tends to produce oscillation in the error signal as a function of the number
of grid–cells). Second, even when there is an error in computing the frequency, as can be seen in one of the two
degenerate modes in part (d), we only need a few FDTD simulations to accurately measure trends or derivatives
of interest that involve a change of material boundaries. Here, where we may be interested in the change in the
resonance frequency of the 2nd band as a function of hole size, we can accurately compute this derivative after
only 2–3 extremely coarse FDTD simulations (Figure 3(d)). Without sub–cell methods, at such coarse levels
of gridding (part (b)) we should not try to estimate the trend against cylinder radius without at least 15–20
FDTD simulations (at which point, one ought to consider fewer simulations with more grid–points in each).
These considerations are somewhat trivial for 2–D band structures, where each FDTD simulation might take
at most a minute and even faster alternatives are readily available [9]. However, the tradeoff shown here does
not change for large 3–D FDTD simulations. Thus the reduction in the memory size, run–time, and number of
required simulations that is offered by such sub–cell methods can enable simulation studies that would otherwise
be simply intractable.

The particular sub–cell method used here assigns an effective dielectric constant to each field component
based on a volume (area) integration of the grid–cell–sized region around that field component, as shown in
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Figure 3. Lowest three bands of the triangular lattice band–diagram from
Figure 2 (bands 2 and 3 are degenerate) at theK point, as a function of the
hole radius,r/a. The results of standard FDTD, with no correction for
staircasing, are shown for both (a) moderate (20 cells/a) and (b) coarse (12
cells/a) gridding; parts (c) and (d) show the FDTD results when using a sub–
cell method taken from the microwave FDTD literature [4] to compute an
effective dielectric constant for every field component located near a material
interface. Insets show the effective dielectric constant for r/a ∼ 0.40.
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Figure 4. Three FDTD grid cells are shown in
the vicinity of a material interface (shaded region).
For the two E–field componentsEy and Ex in
the upper right cell, the cell–sized regions centered
about that field component are shown in dashed
and dotted boxes, respectively. When these are
used to compute the effective dielectric constants,
two different values will result.

Figure 4. The integration scheme chosen here was introduced by Kaneda and co–workers in Reference [4], and
is given as
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The dimension along which the outer integration is performed corresponds to the direction of the field component
of interest located at (x0, y0, z0), which allows this scheme to satisfy the continuity of the tangential E and normal
D fields. For an interface parallel to the field component, the outer integration is straightforward, and the inside
integral results in a simple averaging of the dielectric constant over the volume of the cube. For an interface
perpendicular to the field component, the inside integral is straightforward, and the outer integral leads to an
averaging of the inverses of the dielectric constants (like resistors in parallel).

These two simple cases have been shown to require these disparate dielectric–averaging schemes in 2–D
FDTD [10,11] (and similar conclusions have been drawn elsewhere [12,13]). However, the advantage of Equation 3
is that it provides for the intermediate case of an arbitrarily tilted interface, and is easy to extend to 3–D [4]. In
our implementation of Equation 3, most of the work occurs before the first FDTD timestep: we identify cells at
interfaces, perform the sub–cell integration with, for example, a 30×30 sub-grid (or 20×20×20 in 3–D), compute
the 1, 2 or 3 effective dielectric constants (for TM, TE, and 3–D respectively), and store the resulting FDTD
update coefficients with each cell. During the FDTD time-stepping, these unique update coefficients are then
used instead of the default values. As a result, there is no impact on the stability of the underlying FDTD
algorithm, and only minor impact on the memory requirements and execution speed.

Other sub–cell approaches involve straightforward averaging of the dielectric constant around each field
component [1], averaging of the dielectric constant over the cell volume itself [14, 15], and estimation of the
dielectric constant using the intercepts between material structures and the cell boundaries [16]. A new, more
intricate sub–cell method has recently been published which incorporates the effects of material boundaries on
the tensor relationship between D and E at each field component position [5]. While this method requires many
more stored variables per affected interface cell, it has been shown to produce even more accurate results [5]
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Figure 6. Normalized frequency vs. degree of truncation,
for the square lattice of pillars atkx = ky = 0.95π, corre-
sponding to the right-hand dotted box from Figure 1. As a
smaller portion of the same temporal field evolution is used
for post–processing, both Fourier analysis of the windowed
data (open squares), and then Fourier analysis of windowed
and zeropadded data (filled squares) are unable to resolve the
close-set pair of spectral peaks. However, the near–degenerate
modes can still be accurately identified by filter diagonaliza-
tion [17,18] even when the spectral resolution is much coarser

than the spectral separation between the peaks (indicated by anx on the lower horizontal axis). Dotted horizontal lines
show the predictions of the plane–wave method, representing a relative frequency error of only∼ 0.1%.

than the Kaneda method [4] of Equation 3. An analysis of the impact of these various sub-cell techniques on the
accuracy of FDTD applied to photonic crystal structures is currently underway [3].

3. FREQUENCY RESPONSE

But there remains an unanswered question here: How many FDTD timesteps are really necessary in order to
unambiguously identify the spectral peaks ω1? Through the usual properties of the Fourier transform, the width
of each spectral bin in the calculated frequency spectrum is inversely proportional to the total duration of the
monitored field component’s temporal response. This would seem to imply that accurate determination of the
resonance frequencies requires inordinately long FDTD simulations. As an additional complication, due to the
inherently abrupt truncation of the ongoing temporal response, the raw spectrum tends to have a significant
amount of ripple, as shown by the lowest trace in Figure 5. Here the spectral peaks corresponding to the
particular k value of kx = 0.8π are shown, corresponding to the dotted box from Figure 1 that is located just to
the left of the X point. This undesirable ripple tends to complicate the identification of spectral peaks, since the
derivative of the spectrum will go through zero in many places other than at the peak.

However, it is important to keep in mind that the main interest here is the presence and position of the
spectral peaks, not their width. So multiplying the original temporal response data with a windowing function

such as the Blackman window, f(t) = .42 − .5 cos
(

2π t
tmax

)

+ .08 cos
(

4π t
tmax

)

, can reduce the ripples in the

spectrum without significantly affecting the spectral peak position, as shown by the second trace in Figure 5,
labelled as “Windowed.” In essence, the underlying delta functions we are trying to locate (representing a lossless
mode of essentially infinite Q) are simply being convolved by a symmetric function. As a smaller and smaller
portion of the temporal response captured during the FDTD run is used when performing the Fourier Transform
(as if we had truncated the run earlier to save precious wall–clock time), the resulting spectral peaks get wider
and wider (remaining traces in Figure 5, shown only with Blackman windowing). However, the centroids of these
peaks, representing the normalized frequencies we want to extract to place as dots on the dispersion diagram,
remain almost completely unchanged.

This would seem to imply that it should not be necessary to have long FDTD runs in order to construct an
accurate dispersion diagram. And this would be true if all the peaks were isolated. However, it is straightforward
to see from Figure 5 that at some degree of blurring it becomes impossible to distinguish a close-set pair of modes



from a single mode. So the longer the time duration on each FDTD run used to build a dispersion diagram,
the smaller the uncertainty about having resolved all the (possible) pairs of spectral peaks. And again, this
uncertainty would seem to directly follow the frequency resolution of the Fourier transform, or ∆f = 1/N∆t,
where N is the number of FDTD timesteps of size ∆t.

4. FILTER DIAGONALIZATION

However, it turns out that there are more accurate ways than Fourier analysis to extract resonance frequencies.
One such technique, developed and then significantly extended by researchers in the Nuclear Magnetic Resonance
community [17,19,20], and introduced to the photonic crystal community by Steven Johnson [18,21], is the filter–
diagonalization method (FDM). This method recasts the problem of spectral analysis of a short segment of a
time–dependent signal into an eigenvalue problem. Time–response data containing a number of resonances,
C(t) =

∑

k dk exp (−ı ωk t) , is treated as if it were the autocorrelation function of an unknown dynamical

system, C(t) = (Φ0 , e−ı t Ω̂ Φ0), where (·, ·) represents the complex symmetric inner product [17]. By choosing
Φ0 appropriately, the unknown operator Ω̂ can be completely described in terms of the original data C(t), and
can thus be diagonalized [17]. The advantage of this technique over Fourier analysis is that, rather than simply
measuring the correlation of the signal against multiple sinusoids e−i ωk t in multiple fixed–width spectral bins,
a smaller number of spectral bins are getting precisely tuned in “size” and position to identify the complex
frequencies where there is maximal correlation (e.g., the desired resonances). This allows the FDM method to
distinguish pairs of peaks with much shorter time signals than Fourier analysis would require. The advantage of
filter diagonalization over older harmonic inversion techniques (such as those based on Prony’s method) is that
since FDM can concentrate on a small spectral range, the method remains stable and efficient and the matrices
involved small even when an enormous number of resonances may exist outside of this range of interest [17,19].

The FDM method can be straightforwardly implemented in a Fourier basis simply involves following the
checklist given on page 6761 of Reference [17]. Alternatively, an even easier approach to implementing the
FDM method is that one can now simply download Steven Johnson’s “harminv” program from the web [18]. In
addition to the checklist from Reference [17], the harminv program refines the eigenvalues by repeated iteration,
converging smoothly to an accepted set of resonances.

The advantages of the filter diagonalization method are demonstrated in Figure 6. Here we plot the resonance
frequencies for a close-set pair of peaks from Figure 1 as a function of the number of timesteps used in post–
processing. The k point here, indicated in Figure 1 as a dotted box just to the right of the M point, corresponds
to kx = ky = 0.95π. The same temporal evolutions from five monitor points in a single FDTD run are used for all
points—the only thing that changes is the fraction of the data-set used and the analysis method. The horizontal
axis is plotted both as a function of the number of FDTD timesteps, as well as in terms of the width of the
associated normalized frequency bin. The two horizontal dotted lines show the two near–degenerate frequencies
as determined by the plane–wave method [9] using fairly high resolution (128 plane–waves with the meshing
value set to estimate the local dielectric constant over 7×7 sub-samples). While the error between frequencies
computed by FDTD (squares, diamonds) and the plane–wave estimate may seem large on this scale, one should
note that this is a relative error of only 0.1%.

At the right edge of Figure 6, both Fourier analysis and filter diagonalization are able to resolve the nearly
degenerate modes. The open squares show the results after performing an FFT directly on the truncated data-
set; the filled squares correspond to zero–padding the data-set up to a uniform length of 131072 timesteps. Since
the peak–finding algorithm used here identifies a double peak in the spectrum by the presence of two significant
local maxima, the extra data-points in the FFT after zero–padding helps distinguish the two peaks down to
a truncation of 53,000 timesteps (labelled as point ‘B’). The spectrum for this degree of data-set truncation is
shown in the inset of Figure 6. It turns out that even after the smaller peak no longer has a distinguishable local
maxima, one can qualitatively identify double peaks by counting the number of zero–crossings in the imaginary
part of the spectrum. However, when the truncation is so severe that the minimum frequency bin has become
comparable to the frequency spacing between the degenerate modes (the point marked by an ‘X’ on the horizontal
axis), then even this approach would fail.

However, Figure 6 shows convincingly that by analyzing the same time–response data with the filter diago-
nalization method, one can produce an accurate estimate for the two degenerate modes down to a truncation of



11,000 timesteps (nearly 5× shorter than the cutoff of our peak–finding algorithm, and more than 2× smaller
than the inverse of the mode spacing being resolved). In addition, the FDM method continues to identify the
presence of a double peak (although the frequencies are no longer being computed as accurately) down to a
truncation of only 4096 timesteps, or more than 20× coarser frequency resolution than the spacing between the
nearly–degenerate modes. Thus filter diagonalization is a powerful technique that can significantly reduce FDTD
run–times without sacrificing the ability to resolve nearly degenerate modes.

5. USE OF A PRIORI INFORMATION

In addition to the frequencies (eigenvalues) of the photonic crystal modes, it is often important to know the
mode patterns (eigenfunctions) associated with each mode. Such patterns can be obtained with two successive
FDTD runs: the first uses only a few monitor points in order to obtain the eigenfrequencies of all the modes.
The second then performs a running Fourier transform at every grid point for each frequency of interest. This
means that we no longer can rely on filter diagonalization to resolve near–degenerate modes from each other.

Assuming that the first run was performed with sufficient frequency resolution, we have a priori knowledge
of where the modes that might interfere are located, which we can use to our advantage [22]. For instance, if
we are interested in finding the eigenmode at ω2 while avoiding any contribution from a nearby mode at ω1, we
can choose an envelope function whose spectrum has a zero at ω1. Figure 7 shows the mode patterns (absolute
value of Ẽz) for the two nearly degenerate modes of the square lattice near the M point that were the subject of
Figure 6. The top row (parts (a), (b), and (c)) shows the lower frequency mode pattern, while the bottom row
(parts (d), (e), and (f)) shows the pattern for the higher frequency mode. As can be seen in the inset of Figure 6,
the higher frequency mode had a much weaker response in our simulations, simply due to poorer coupling
from the particular initial excitation ‘ping’ we happened to choose. Parts (a) and (d) represent the modes as
calculated by a long FDTD run (120300 time-steps), so that the two frequencies are clearly resolved by the end
of the running Fourier transform. Parts (b) and (e) represent the modes when the running Fourier transform is
accumulated over only 12000 time-steps. Since the lower frequency mode is stronger, it dominates the truncated
computation of both mode patterns. These were obtained by Fourier transforming at the exact frequencies
indicated by filter diagonalization on a previous run, without any Blackman window. (With a Blackman window
applied, the higher frequency mode pattern was almost identical to the lower frequency pattern.)

Parts (c) and (f) of Figure 6, in which the two modes are correctly resolved, is obtained with exactly the same
reduced number of time-steps. The only difference is that the length of the time-step ∆t is slightly adjusted so
that the normalized frequency f1 of the strong mode lies exactly at the center of a frequency bin, as

(∆t)′ =
⌊f1 c∆tN⌋

f1 cN
, (4)

where N is the number of timesteps and c the speed of light. Without any spectral windowing, the effective
spectral response of each bin is a sinc function (e.g., sin(πx)/(πx)) whose nulls land at the center of each
neighboring spectral bin. This means that a running Fourier transform at the frequency corresponding to the
center of the next higher bin will not accumulate any signal from the mode at f1, even as it accumulates energy
from f2 (since this bin’s sinc function is non–zero at f2 6= f1). This occurs even when this next frequency
bin-center is somewhat higher than the actual value of f2. As a result, the mode patterns for the weaker mode
can be distinguished from the stronger without having to use a large number of time–steps. Such techniques for
the Fourier analysis of such photonic crystal modes are possible because the spectral features we are trying to
either avoid or detect are essentially delta functions, and because we have a priori knowledge of the frequencies
involved.

6. INTRINSIC OUT–OF–PLANE RADIATION LOSS FROM PHOTONIC CRYSTAL
WAVEGUIDES

In this section, we study the intrinsic out–of–plane radiation loss from the planar photonic crystal shown in
Figure 8. Here, instead of the infinitely tall air holes we used earlier, a triangular lattice of air holes is drilled
into a finite–thickness slab. A row of holes is left filled to serve as the photonic crystal waveguide. The photonic
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Figure 7. Modal patterns (|Ez|) for the two degenerate
modes near the M point for the square lattice of dielectric
rods in air (Figure 6, right–hand dotted box from Figure 1).
One unit cell is shown, with the rods (not shown) located in
the four corners. Parts (a), (b), (c) correspond to different
calculations of the lower frequency (f∼0.5477) mode;
parts (d), (e), (f) to the simultaneous computation of the
higher frequency (f∼0.5497) mode. Parts (a) and (d) were
calculated with long (120300 timesteps) FDTD runs; parts
(b), (c), (e), and (f) with much shorter simulations (12000
timesteps). Although the modes are nearly degenerate,
the response to the lower frequency mode was stronger
during our simulations due to the placement of the initial
excitation. As a result, at low frequency resolution the
running Fourier transform of the higher frequency mode
(e) is swamped by crosstalk from the nearly degenerate

mode (b). As described in the text, a simple modification allows the properties of the Fourier transform to “null out” the
crosstalk from the strong mode, revealing the weak mode (f).

Figure 8. One example of a planar photonic crystal is a triangular
lattice of air holes at lattice spacinga, etched into a thin high–
index slab. A photonic crystal waveguide is formed by leaving
a row of defects (here, this is a row of missing air holes). Light
entering from one of the ridge waveguides at the ends of the photonic
crystal waveguide is confined vertically to the slab by totalinternal
reflection (index guiding), and laterally to the defect row by the
photonic bandgap effect. Here an air–bridge structure is shown
that can offer improved index guiding, with an underlying substrate
located some distance below the slab.
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Figure 9. Dispersion diagram for the planar photonic
crystal triangular lattice of air holes (hole radiusr/a=0.3,
slab thicknessh/a=0.6) in dielectric (ǫ=11.56), along with
the reciprocal lattice. The unit cell used here is the same asthe
primitive 2–D unit cell inx andy (the rhombus shown in the
inset), extruded inz through surrounding air regions and the
underlying substrate of identical high–index material (located
3a below the slab). PML absorbing boundary conditions
truncate the simulation 3a above the slab, and 1.5a into the
substrate. Lower–lying odd modes have been removed (see
text).

crystal waveguide is shown connected at both ends to a conventional ridge waveguide, with air both above and
below the slab, at least down to an underlying substrate.

The slab modes are shown as calculated by 3–D FDTD in Figure 9. These are, at least for the first three
bands, only the “TE–like” modes that are vertically even with respect to the center plane of the slab. The
light–line corresponding to the air (n ∼ 1) cladding is also shown.

Now that we have identified the guided mode gap described by Figure 9, we can engineer a waveguide by
removing a row of defects.

Figure 10 shows the folded slab modes from Figure 9 as the boundaries of two light gray regions of slab
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Figure 10. Dispersion diagram for the planar photonic crystal
waveguide formed by removing a row of holes along theΓK direc-
tion from the triangular lattice. The unit cell shown in the inset spans
1a in thex direction and 14a in they direction, with vertical geom-
etry identical to Figure 9. PML absorbing boundary conditions are
placed on the±y and±z boundaries, with Bloch/Floquet boundary
conditions on the±x boundaries. When the lattice of holes con-
tinues into the PML layers, then slab modes are greatly suppressed,
but also require lower∆t values for values ofkx >∼ 0.8π/a in
order to avoid late–time instability.
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Figure 11. Normalized frequency as repeatedly computed
at threekx values from Figure 9, for various choices of the
number of surrounding rows of photonic crystal, and of the
size of the FDTD cell (in units of cells/a). These choices
are not shown in combination: for the reduced number of
photonic crystal rows, the grid spacing isa/20; for the coarser
grid–spacing, the number of photonic crystal rows is 7. The
grid–cells are scaled so that theirx andz sizes are identical
within the slab, with they grid step slightly smaller to allow
an integer number of steps pera′ =

√
3a/2. For most

simulations, a smallerz grid–spacing was used for regions of

the 3–D simulation outside|z| < a. However, two simulations were run for with constantz grid-step ofa/16 anda/20
throughout the unit cell; the resulting frequencies are shown on the plot, but are so close to those from the non–uniform
grid simulations that the symbols overlap.

modes, bracketing the mode gap region between normalized frequencies of 0.261 and 0.346. These gray regions
represent the presence of modes from throughout the entire Brillouin zone, as bounded by the modes shown in
Figures 9 from the periphery of the Brillouin zone. The light line (for air cladding) has also been placed on
the dispersion diagram. It is clear that the regions of primary interest are those left unshaded on the figure. If
we create a guided mode through defect placement that is in the light gray region, then we can expect it to be
lossy by coupling (from our defect mode) to the many slab modes of the photonic crystal which are free to guide
light away from our waveguide. If a guided mode runs above the light line, then we can expect it to be lossy by
coupling to the many radiation modes which are free to radiate light vertically away from the slab.

To compute the defect modes of the photonic crystal waveguide with FDTD, we use a 3–D unit cell of the
waveguide as shown in the inset of Figure 9. Here we take a slice out of the waveguide which is exactly one a
long in the guiding direction x, and which encompasses a number of photonic crystal rows in y (here seven on
each side) [8, 23]. As before, vertically there is air both above and below the waveguide, and a silicon substrate
3a below the slab (not shown in the inset). PML absorbing boundary conditions are used on both the ±z and ±y
dimensions, and Bloch/Floquet boundary conditions in the ±x direction [8,24,25]. The same type of simulations
as before are run, with each FDTD simulation determining the eigenfrequencies of the modes at the k vector
being established by the Bloch/Floquet boundary conditions. The difference here is that we need only vary kx

from 0 to π/a.

The guided modes introduced by the defect are shown in Figure 10 as filled circles (connecting lines are
present only to guide the eye). The defect mode that is horizontally even, and which has received considerable
attention in both theoretical and experimental work [26], is shown in bold with filled circles. Typically the
interest in this particular mode is driven by the interest in obtaining strong coupling to and from this photonic
crystal waveguide mode using the similarly–shaped fundamental mode of a conventional ridge waveguide. The
other two modes in the guided mode gap have different symmetries [8,27]. While it is clear that part of this mode
exists above and part below the light line, the dispersion diagram does not provide any quantitative information
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Figure 12. Intrinsic loss due to out–of–plane radiation for the
photonic crystal slab waveguide described in Figures 9 and 10, as
a function of spatial frequencykx in units ofπ/a. Insets show the
Blackman–windowed incident field (upper right), the resulting field
evolution for a lossy spatial frequency above the light line(center
left) and for a low–loss point below the light line (lower left).
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Figure 13. Out–of–plane loss as repeatedly computed at
threekx values from Figure 12, for various choices of the
number of surrounding rows of photonic crystal, the size of
the FDTD cell (in units of cells/a), and the total number of
FDTD timesteps used for the loss measurement. The length of
the Blackman window is chosen to be 5 optical cycles shorter
(∼700 timesteps) than the overall length of the simulation.

on the losses. We will take up this topic in the next section.

Before doing so, it is interesting to consider variations on our choice of grid spacings (a/20) and the number
of surrounding photonic crystal rows (7). To do so, we have picked out three kxa/π values (.25, .60, and .85)
and repeatedly calculated the frequency of the primary even mode shown in Figure 10 for different choices of
grid spacing and the number of photonic crystal rows (along the y dimension). The results, shown in Figure 11,
clearly demonstrate that our original choices were actually quite conservative. It would be prudent to check these
choices in combination, but it would seem that a grid–spacing as coarse as 12 cells per a and only 3 surrounding
photonic crystal rows (on each side) would be sufficient to deliver low error. Recall that the use of the Kaneda
(or another) sub–cell techniques we described before helps greatly in the scaling against grid-spacing; without
such techniques, it is quite likely that the errors would be much larger. The relative frequency error is < 0.1%
for all choices ≥ 3 surrounding rows, and < 0.3% for all grid spacings finer than a/12. As described in previous
sections, it is likely that the number of timesteps used to compute the eigenfrequencies could be significantly
reduced as well. Here, we chose a number of timesteps sufficient to resolve two frequencies near the center of the
bandgap that differ by 1% (e.g., to place them two frequency bins apart in the resulting FFT).

An alternate technique for computing the intrinsic loss was recently introduced by Kuang and co–workers
[28]. This technique is similar to the procedure we used earlier to compute modal patterns, in that once the
eigenfrequency of a defect mode of interest is known, we run another nearly identical simulation to focus in on
this eigenfrequency. However, rather than ping all temporal frequencies and take a running Fourier transform,
instead we preferentially excite just the mode of interest by a continuous–wave excitation of our single spatial
dipole as before. By driving the real part of the complex E fields with a sinusoidal carrier, and the imaginary
part or bottom layer with a cosine, we can produce an excitation that travels in only one direction across the
periodic boundaries [29]. In order to reduce the excitation of modes at other frequencies, we can apodize the
temporal waveform with a Blackman window [28]. The envelope of the resulting temporal waveform is shown
as the upper right inset in Figure 12; the carrier (one cycle ∼ 140 timesteps) oscillates too rapidly here to be
seen clearly. At the end of this excitation waveform, a large amount of energy has been injected into the mode
of interest, the one specified in spatial frequency k by the boundary conditions and in temporal frequency ω by
the incident source. If this mode is lossy, this energy continuously leaks out of the waveguide; if it is not, the
injected energy would continue to propagate along the guide.

These two cases are shown in the left–hand insets in Figure 12, where the top inset shows the field evolution
at a fairly lossy k–value located above the light line. Even before the excitation pulse is finished, it is apparent
that energy is leaking out of the mode at this spatial frequency. In contrast, in the lower inset, the field amplitude



continues to build throughout the excitation. In this case, we could choose to continue the simulation and attempt
to measure the slow decay of this field over subsequent time. However, since the lost energy must be leaving
the simulation via the absorbing boundary conditions, we can measure the power flow out of the waveguide at
any point during this steady–state condition by spatially integrating the Poynting vector just in front of the
PMLs. Similarly, we can measure the power flow along the waveguide by integrating the flow across the Floquet
boundary conditions. The ratio of the power flow leaving Pout to that remaining P0 can be used to measure both
the out–of–plane loss and the intrinsic loss into the slab due to a finite number of rows of surrounding photonic
crystal. The loss per centimeter is then − log(1 − (Pout/P0))/a; here we use a = 420e-7 cm [28].

In the main plot of Figure 12, we show the out–of–plane loss for the horizontally even mode featured in
Figure 10 of the air–bridge, triangular lattice planar photonic crystal shown in Figure 8. This design is identical
to the first of the five cases studied in Reference [28], and thus can be directly compared to the appropriate curve
in Figure 2(a) of that paper. As expected, the losses are fairly high for the portions of the dispersion curve that
lie above the light–line, and are quite low below the light line. The advantages of this technique are that we can
measure very low losses (Kuang estimated an accuracy limit of <.01 cm−1 [28]), and that the out–of–plane loss
can be isolated from the in–plane loss and effects such as mode coupling.

As we did in the frequency calculations, we repeat these intrinsic loss simulations for various choices of the
number of surrounding rows of photonic crystal, for the grid–spacing in cells per lattice constant a, and also
as a function of the length of the windowed excitation in time–steps. The results are shown in Figure 13. As
before, as few as 4 surrounding rows, 12 grid–cells per a, or 6000 timesteps could be used without significant
impact on the computed loss. Of course, the impact of making all three of these choices together would need to
be verified. Interestingly, when we initially seeded all these convergence tests with the accurate eigenfrequency
obtained with the conservative choices of 7 surrounding rows and 20 cells per a, the errors were somewhat larger
at the left edge of each subplot than those shown here. We traced this to the fact that very little energy was
being injected into the mode of interest when we combine a slight frequency error and a long time window.
As shown in Figure 13, simply using the same conditions (coarse gridding or reduced number of surrounding
photonic crystal rows) for both the frequency and loss calculations avoids this problem. Similarly, the use of a
shorter time window on the excitation allows any nearby frequency to produce the correct excitation, although
this would be exactly the thing to avoid if a second defect mode were located at a nearby frequency. Still, we
can reduce the computational load in terms of the number of timesteps so long as no competing defect (or slab)
mode is nearby.

7. CONCLUSIONS

It is common to read in photonic crystal papers that the FDTD technique is excessively demanding in compu-
tational resources. There is, of course, much truth in this. However, such statements are often associated with
assumptions of the necessary grid spacings, grid extent, and the total number of timesteps that are chosen based
on rough rules of thumb or approximation, rather than on careful analysis. In some cases, such conservative
choices may indeed be prudent. However, we have shown here that by using sub-cell methods, that can permit
coarser spatial gridding; filter-diagonalization, that can find resonance frequencies with fewer FDTD timesteps;
a priori information, to “null out” erroneous contributions at other frequencies; and by maximizing the informa-
tion obtained with small numerical experiments that involve only the unit cell of the photonic crystal waveguide,
we can challenge these assumptions can lead to significant reduction of the computational burden without a
significant impact on accuracy.
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