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In this work, we present a reproducible suite of test problems for large-scale optimization (“inverse design” and
“topology optimization”) in photonics, where the prevalence of irregular, non-intuitive geometries can otherwise
make it challenging to be confident that new algorithms and software are functioning as claimed. We include test
problems that exercise a wide array of physical and mathematical features—far-field metalenses, 2d and 3d mode
converters, resonant emission and focusing, and dispersion/eigenvalue engineering—and introduce an a posteriori
lengthscale metric for comparing designs produced by disparate algorithms. For each problem, we incorporate
cross-checks against multiple independent software packages and algorithms, and reproducible designs and their
validations scripts are included. We believe that this suite should make it much easier to develop, validate, and gain
trust in future inverse-design approaches and software. © 2024 Optica Publishing Group

https://doi.org/10.1364/JOSAB.506412

1. INTRODUCTION

Inverse design has become an increasingly important tool to
develop non-intuitive/freeform solutions for challenging engi-
neering problems in photonics [1]. Broadly speaking, inverse
design consists of methods for large-scale optimization over
vast numbers of geometric and material parameters—such as
topology optimization [2], in which the material distribution
at every point in space (“every pixel” in a discretized model)
is a degree of freedom. New algorithms and software are con-
tinually being developed, but an obstacle to progress and wider
adoption is a scarcity of accepted methods to rigorously validate
new tools. This is because the result of inverse design is often
a complex, non-intuitive structure for which no analytical
solutions are available, and it can be unclear how to evaluate
its performance. (In an increasing number of special cases,
theoretical upper bounds are becoming available [3–5], but
these bounds are not always tight: they may over-estimate the
attainable performance.) It can be challenging to compare to
previous inverse-designed structures in the literature (which are

often only published as an image in a figure), because different
degrees of freedom and/or starting points may lead to entirely
different local-optima designs [1]. For example, in many
problems the results may depend sensitively on the imposed
minimum lengthscales or other manufacturing constraints as
the discretization model, but because there are many discretiza-
tion schemes and distinct mathematical formulations of such
constraints [6–10] it can be challenging to quantitatively com-
pare results obtained by different methods. Existing validation
approaches often compare solvers against simple analytical solu-
tions or other software, check gradients (e.g., shape derivatives)
against finite differences, verify optimality [Karush-Kuhn-
Tucker (KKT)] conditions [11] at local optima, and compare
optima with upper bounds, along with other good practices (for
benchmarking, visualization, etc.) [12]. In addition to these
useful checks, however, it would be valuable for the photonics
inverse-design community to supplement basic tests with a
widely accepted suite of optimization problems with reproduc-
ible performance (even if different algorithms obtain distinct
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Fig. 1. Overview of the six testbed design problems for topology optimization used to validate various methods for photonics inverse design. The
testbed problems are chosen to span a wide range of design objectives, dimensionality (2d and 3d), materials (dielectrics and metals), and design
degrees of freedom. Several of the problems also involve imposing constraints on the minimum feature size. (a) RGB metalens. (b) Waveguide mode
converter. (c) Metallic concentrator. (d) Purcell enhancement (LDOS). (e) Metagrating. (f ) Slow-light waveguide.

local optima), for typical photonics-design problems that test a
variety of algorithmic features.

To this end, our goal in this paper is to provide a testsuite
for photonics inverse-design tools: a set of carefully selected
problems (Fig. 1), evaluated and characterized with multiple
parameters—and in several cases checked with multiple inde-
pendent software packages (thanks to a broad collaboration
involving multiple research groups). Our problems are chosen
to exercise typical important features of photonics inverse-
design methods, such as minimax/worst-case optimization
(e.g., Section 3.B), both single-wavelength (e.g., Sections 3.D–
3.F) and broadband design (e.g., Section 3.C), modal
decomposition (Section 3.C) or intensity-based objectives
(e.g., Sections 3.B and 3.D), support for metals (Section 3.D)
and dielectrics, both scattering (e.g., Sections 3.B, 3.C, and 3.F)
and resonance (Section 3.E) or dispersion-relation (Section 3.G)
design, near-to-far-field transformations (Section 3.B), as
well as problems with fabrication/lengthscale constraints
(e.g., Sections 3.B, 3.C, and 3.E). We include problems
accessible to surface-integral-equation (e.g., boundary-
element) methods (e.g., Sections 3.B and 3.D) as well as to
partial-differential-equation (PDE, e.g., finite-element/finite-
difference) methods. Each individual problem exercises only
a few of these features, and the problems are small in scale—
2d or low-diameter 3d (Section 3.F)—with the hope that
any new algorithm or software should find at least one prob-
lem in the suite to be easily approachable. Dataset 1, Ref.
[13] includes high-resolution data/images for exemplary

optimized designs. In order to assess the impact of fabrica-
tion/lengthscale constraints, we propose a simple a posteriori
lengthscale-characterization (Section 2), so that in strongly
lengthscale-dependent problems (e.g., Section 3.E) we can
provide performance results as a function of lengthscale and
results generated by different algorithms can be compared
using the same metric. Free/open-source software is provided
in Dataset 1, Ref. [13] [14,15] for the lengthscale metric and
results, including scripts to validate the performance of com-
plex inverse designs generated externally. For most non-trivial
problems, one may not obtain identical results using different
algorithms—the problems are typically non-convex (with many
local optima), and algorithms may also involve different degrees
of freedom and constraints—but we show that entirely differ-
ent software should be able to obtain comparable performance
results (even if the optimized geometries are different). Given
an optimized structure, we also provide scripts (in Dataset 1,
Ref. [13]) to validate its performance with free/open-source
simulation software [16–19], or even to perform a new local
optimization with the previous structure as a starting point (to
check whether it can be further improved).

Since our test problems, along with most other practical opti-
mization problems in photonics, are non-convex, optimization
can only be expected to find local optima [1,2]. Global opti-
mization algorithms, such as “multistart” algorithms in which
one performs local optimization from random starting points
[20], do not circumvent this issue because such algorithms can-
not indicate when a global optimum has been reached (short of
exhaustive search of the parameter space and related brute-force
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methods, which are computationally infeasible except for a tiny
number of parameters [3,21]). Different implementations of
the same problem, even with the same starting guess and param-
eterizations, may converge to different local optima simply
due to differences in the discretization or other details of the
optimization algorithm, and an inflexible validation approach
that required all users to find an identical local optimum would
be onerous to use. However, distinct algorithms can still be
usefully compared! Any local optimum is a lower bound to the
global optimum, indicating at least how well one might hope to
do, and for each problem we also report a range of local optima
obtained by various starting points, giving some indication of
the variance in expected results. For all of the test problems in
this paper, we find that many local optima have performance
comparable to the results shown, so that it should not be difficult
to reproduce similar performance (if not the specific local min-
imum) in another solver. (Such diversity of good-performing
local optima is often useful in inverse design, because it yields
additional freedom to choose a good design according to other
criteria such as ease of manufacturing; this is in stark contrast to
the field of inverse scattering [22,23] in which a unique “ground
truth” geometry is sought for imaging.) For some problems, an
analytical upper bound is also available—e.g., mode conversion
cannot exceed 100%, and new mathematical techniques are
beginning to reveal upper bounds for light emission, focusing,
and other effects [3–5]—so that the global optimum can be
bracketed between optimization’s lower bound and analysis’
upper bound.

In the following sections, we first discuss a metric for evalu-
ating the minimum lengthscales of a given design (Section 2)
represented using a raster image and then present the prob-
lem formulations and validation results for a sequence of
basic test problems (Section 3) for photonic inverse design
(depicted schematically in Fig. 1). These problems consist of
optimizing far-field three-wavelength (RGB) focusing by a
2d metalens [24] (Section 3.B), near-field single-wavelength
focusing by a 2d metallic particle (Section 3.E), a 2d waveguide
mode converter/demultiplexer [1,17,25–28] (Section 3.C),
3d diffraction-grating design [29–33] (Section 3.F), 2d res-
onance optimization via the local density of states (LDOS)
[34–36] (Section 3.E), and 2d dispersion optimization for a
photonic-crystal waveguide [37,38] (Section 3.G).

2. MEASURING MINIMUM LENGTHSCALES:
imageruler

A variety of techniques have been developed to impose
minimum-lengthscale constraints during topology optimiza-
tion [6–10]. The problem of measuring minimum lengthscales
(or feature sizes), in order to characterize designs represented
by raster images produced by different algorithms, is somewhat
different, however. For example, lengthscale constraints must
be differentiable in order to support optimization, whereas
a posteriori measurement does not have this requirement; in
some ways it is more analogous to design-rule checking (DRC)
used in physical verification of semiconductor devices based on
foundry specifications in process design kits (PDKs) [39,40].
DRCs, however, are not necessarily designed to extract a single
lengthscale, and have several limitations for our application:

(1) their input geometry must be a polygon (a layer of a GDS
file), (2) the KLayout DRC [39], in particular, does not reliably
distinguish small lengthscales corresponding to sharp corners,
and (3) the designs must be 2d.

Required attributes that we impose on our choice of
lengthscale algorithm include the following.

• It must distinguish small lengthscales from mere dis-
cretization artifacts (e.g., single-pixel “bumps” arising in
“staircased” interfaces).

• The lengthscale must be “resolution-invariant,” in that
the same geometry sampled at different resolutions will yield
nearly the same lengthscale (within an error imposed by the
finite resolution).

• The lengthscale must be invariant under rota-
tion/translation of the image (in the limit of infinite
resolution).

• Sharp corners or cusps should be treated as arbitrarily small
lengthscales at arbitrarily fine resolution (and more generally as a
small lengthscale proportional to the pixel size).

• No lengthscale violations should occur at the outer borders
of the image, since this depends on what “lies outside” the image
(i.e., the boundary conditions, which can be chosen by suitably
padding the image).

• The same algorithm should ideally be applicable to 1d
(multilayer/grating), 2d, and even freeform 3d [41–46] design
patterns.

Our resulting algorithm, described below and available
as free/open-source software imageruler [14], is based on
well-known morphological transformations, especially
morphological opening and closing operations [8,47–50].

Given a binary image (density) ρ of “solid” (value= 1) and
“void” (value= 0) regions like the one in Fig. 2(a), we want to
determine separate minimum lengthscales for both solid and
void (also called minimum “linewidth” and “linespacing” [51]),
the locations of any violations in the image (features smaller
than a given length d ), as well as an overall minimum lengthscale
equivalent to the smaller of the solid and void lengthscales.
The central question is how one checks for violations given d ,
after which the minimum lengthscale can simply be defined
as the largest d for which there is no violation at any d ′ < d . It
suffices to explain how solid violations are determined, since
void violations are equivalent to solid violations of the inverse
image ρ̄ = 1− ρ.

We employ the mathematical tool of a morphological opening
operation Od (ρ) [47], which is defined as an erosion (shrink-
age) of the solid regions followed by a dilation (expansion) of
the remaining solid, in both cases using a kernel or structur-
ing element given by a disc of diameter d (in order to preserve
rotational invariance) as shown in Fig. 2(b), which corresponds
intuitively to a round “probe” or “brush” [52]. (At diameters
d comparable to the pixel size, where lengthscale measures are
inherently less reliable, the “staircased” discretization of this
disc kernel also becomes less symmetrical and more arbitrary,
as shown in Supplement 1.) Any solid feature smaller than d is
erased by the erosion operation and does not reappear during
dilation, whereas larger features are restored to their original
shapes. Hence, the difference ρ −Od (ρ) is nonzero only at loci
of lengthscale violations. However, in order to avoid treating
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Fig. 2. Morphological method for estimating minimum lengthscales. (a) Example of a binary design pattern. The design pattern ρ is composed
of nested discs with solid or void materials filled in between. All critical lengthscales are indicated by arrows and listed in the text with corresponding
colors. In particular, the minimum lengthscales of solid and void regions are d solid

min = 30 and d void
min = 40. (b) Example of a probe. During the search for

minimum lengthscales, the probe diameter d is subject to change. (c) Violation of various lengthscales. The first row demonstrates the violation of
solid lengthscales, as described in Eq. (1). The second row demonstrates the same operation on the binary pattern with solid and void regions inter-
changed, as described in Eq. (2). The third row demonstrates the sum of the patterns in the two rows above, as described in Eq. (3). The original pat-
tern is superimposed on each pattern of difference as a guide to the eye.

mere discretization artifacts as violations, one more important
step is required: a pixel whereρ −Od (ρ) 6= 0 is only considered
a violation if it lies in the interior of the original solid regions ofρ
(not at the discretized solid/void interface), as defined more pre-
cisely in Supplement 1. This scheme is depicted for an example
structure in the first row of Fig. 2(c) for varying brush diameters
d : violations appear wherever d exceeds the minimum solid
lengthscale d solid

min , defined as the smallest d for which a violation
appears, i.e.,

[ρ −Od (ρ)] · Eε(ρ)
{
= 0, d < d solid

min ,

6= 0, d ≥ d solid
min ,

(1)

whereEε(ρ) denotes morphological erosion using a small kernel
diameter ε (about 3 pixels), which generates the interior pixels of
the solid regions inρ. The value of d solid

min can be determined com-
putationally by a binary search.

As mentioned above, the void lengthscale can be determined
by an identical algorithm merely by inverting the original struc-
ture to ρ̄ = 1− ρ: violations are nonzero pixels of ρ̄ −Od (ρ̄)

that lie in the interior of the solid regions in ρ̄, corresponding
to the interior of the original void regions. Mathematically,
this is exactly equivalent to counting nonzero interior pixels
of Cd (ρ)− ρ, where Cd (ρ) is the morphological closing oper-
ation, consisting of dilation of the solid regions followed by
erosion (instead of the reverse) [47]. This scheme is depicted in
the second row of Fig. 2(c), in which void lengthscale violations
appear as soon as d exceeds the minimum void lengthscale, i.e.,

[ρ̄ −Od (ρ̄)] · Eε(ρ̄)

= [Cd (ρ)− ρ] ·Dε(ρ)

{
= 0, d < d void

min ,

6= 0, d ≥ d void
min ,

(2)

where Dε(ρ) denotes morphological dilation using a small ker-
nel diameter ε, which satisfiesEε(ρ̄)=Dε(ρ).

For many fabrication technologies, the constraints on
minimum linespacing and linewidth differ, which is why it
is useful to measure them separately [6–8,51]. However, to
provide a simple metric for comparing different optimization
algorithms on our test problems, we define a single overall
minimum lengthscale given by the minimum of the solid and
void lengthscales: dmin =min(d solid

min , d void
min ). It turns out that

there is another mathematically equivalent way to calculate this:
because the solid and void regions are spatially disjoint, violation
of either the solid or void minimum lengthscale is simply the
sum of the two violations, which is equivalent to the violation
calculated from the difference between morphological closing
and opening, i.e.,

[ρ −Od (ρ)] · Eε(ρ)+ [ρ̄ −Od (ρ̄)] · Eε(ρ̄)

= [ρ −Od (ρ)] · Eε(ρ)+ [Cd (ρ)− ρ] ·Dε(ρ)

= [Cd (ρ)−Od (ρ)] ·
[
Eε(ρ)+Dε(ρ)

] {
= 0, d < dmin

6= 0, d ≥ dmin
.

(3)

This is depicted in the third row of Fig. 2(c), which shows viola-
tions for either solid or void, and is clearly the sum of the first two
rows.

We have released a free/open-source Python-software pack-
age imageruler that implements these algorithms, with
morphological transformations provided by the OpenCV soft-
ware [53]. (The above algorithm is applied to 2d design patterns
in the released version of our package because of the limitations
of OpenCV, but we also implemented a version applicable to
3d designs. For 1d designs, the same algorithm could be used,
but for simplicity the package just searches for the minimum
lengths among all solid and/or void segments.) As explained
above, imageruler effectively does not consider violations
at the edge of the image; this is accomplished by padding the
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image with solid when performing open operations and by void
when performing close operations. (The user can instead pad
the image with different boundary conditions as desired.) For
the test problems below, we padded the design images according
to boundary conditions defined in the problem. Further details
of the implementation are described in Supplement 1.

3. TEST PROBLEMS AND RESULTS

In the following sections, we describe our proposed test prob-
lems, along with exemplary results from a variety of photonics
inverse-design software packages and algorithms. Our goal is
to present these problems in a form that the problems could
be implemented using many different algorithms, with many
different parameterizations of the materials and design, besides
those presented here. Although distinct algorithms and param-
eterizations may not converge to the same local minima, we
typically find that comparable performance can be achieved,
sometimes after exploring a modest number of local minima
from different starting points. Given the specific local minima
shown below (using data files supplied in Dataset 1, Ref. [13]),
of course, any numerical Maxwell solver should obtain the
same results up to the limits of numerical resolution. We begin
with a general overview of photonics inverse problems and the
algorithms employed by our exemplary implementations.

A. Physical Models and Optimization Problems

For all test problems considered in the following, the physics is
modeled using the classical Maxwell equations assuming linear,
static, homogeneous, isotropic, non-dispersive, non-magnetic
materials. Since the problem is linear time-invariant, the equa-
tions can ultimately be expressed in the frequency domain for
time-harmonic fields (Ee iωt ,He iωt ) and excitations, even if
in some cases we solve them in the time domain and obtain
frequency-domain results by a discrete-time Fourier trans-
form [17]) or via an equivalent integral-equation formulation
[54,55]. The frequency-domain Maxwell equations can be
written in terms of the electric fields, magnetic fields, or both:

∇ ×∇ × E(r)−
ω2

c 2
ε(r)E(r)= iωµ0J(r), r ∈�, (4)

∇ ×

(
1

ε(r)
∇ ×H(r)

)
−
ω2

c 2
H(r)=−iωε0K(r), r ∈�.

(5)
Here E(r) (H(r)=∇ × E/iωµ0) denotes the spatially depen-
dent electric (magnetic) field vector, ω the angular frequency, c
the speed of light in vacuum, µ0 (ε0) the vacuum permittivity
(permeability), ε the relative permittivity, �⊂R3 the modeling
domain, and J (K) an electric (magnetic) current density (the
excitation source). These equations (or equivalent formulations
thereof ), along with a set of problem-appropriate boundary
conditions, can be discretized in a variety of ways [54]; below,
we employ either a finite-difference method, a finite-element
method, a volume-integral-equation (VIE) method (which
solves a corresponding integral-equation formulation [54–56])
in Section 3.B, or a modal-expansion method [57] in
Section 3.F. Any frequency-domain discretization ultimately

results in a linear system of equations to be solved for a given
material distribution and external forcing to obtain the elec-
tric and/or magnetic field in �. Of course, one also requires
suitable boundary conditions; most of the test problems use
outgoing/radiation boundary conditions (combined with peri-
odic boundary conditions in Section 3.F), which were mainly
implemented with perfectly matched layers (PML) [58–60],
with the exception of integral-equation and modal-expansion
methods where outgoing boundaries are analytically implicit
in the method. Although a variety of units are popular for the
Maxwell equations (including SI units and “dimensionless”
units where ε0 = 1 and µ0 = 1), our final optimization objec-
tive functions are expressed as normalized/non-dimensionalized
values so that the units of a particular computational scheme
become irrelevant.

Each inverse-design problem of this paper follows the typical
form [1] of an optimization problem in which one parameterizes
the geometry—the distribution ε(r) of materials in space—as a
function of some design parametersρ that describe the structure
in a design domain �d ⊆�, solving for the resulting electro-
magnetic fields E(ρ) and/or H(ρ), and then maximizes (or
minimizes) a real-valued objective function8 ∈R that depends
on these fields (and possibly ρ), subject to N j ≥ 0 constraints
c j ≤ 0 (where c j ∈R is a function of ρ and/or the fields). That
is, they are of the form

max
ρ

8(E(ρ), ρ),

s.t. c j (E(ρ), ρ)≤ 0, where j ∈ {1, . . . ,N j }. (6)

The electric (and/or magnetic) field in Eq. (6) is obtained by
solving the corresponding (discretized) Maxwell equation
given the material ε determined by the design parameters ρ,
which can be thought of as an implicit equality constraint in the
optimization problem. The constraints c j (if any) can be used
to represent manufacturing constraints, or can express other
aspects of an optimization problem as discussed below.

In each of our test problems below, there will only be two
options for materials (depending on the problem) at any point
in �d . There are many possible ways of parameterizing the
arrangement of two materials in a given design domain �d ,
from material density functions or level sets (which can describe
any possible arrangement of two or more materials) to simple
shape parameters (such as the diameters and centers of cylinders
of material). To make (local) optimization tractable with large
numbers of parameters, one typically requires ε to be parame-
terized continuously and differentiably in terms of continuous
parameters ρ [1]. In our exemplary implementations of the test
problems, we employ density-based topology optimization [2],
in which ρ describes a function ρ(r) ∈ [0, 1] over the design
domain r ∈�d , discretized in space via some basis or mesh (we
used the same grid/mesh as the electromagnetic fields), where
ρ = 0 or 1 refers conceptually to one material or the other. In
practice, matters are somewhat more complicated: the design
density ρ is first smoothed (low-pass filtered) to a function ρ̃
and then projected [61] using a continuation strategy to obtain
a nearly binarized design ρ̂. In our discretizations based on
a uniform grid (finite difference and modal expansion), the
smoothing ρ 7→ ρ̃ simply employs convolution with a conic
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filter, whereas in finite-element methods with an unstructured
mesh we employ a damped-diffusion filter [62], in both cases
with a problem-dependent smoothing radius r f . The projection
ρ̃ 7→ ρ̂ is a smoothed step function:

ρ̂ =
tanh(β · η)+ tanh(β · (ρ̃ − η))

tanh(β · η)+ tanh(β · (1− η))
,

β ∈ [1,∞), η ∈ [0, 1], (7)

where η= 0.5 (except where noted below for robust opti-
mization), and β ∈ [1,∞) is gradually increased during
optimization to converge to a mostly binary design (ρ̂ ≈ 0 or 1
almost everywhere).

Given the smoothed/projected design field ρ̂(r), the rela-
tive permittivity ε(r) is then interpolated (either linearly in
ε, linearly in ε−1, or linearly in the refractive index

√
ε). The

choice of interpolation depends in part on the nature of the
particular test problem, and particular care is required for metal-
lic design problems (Section 3.D) to ensure that intermediate
densities ρ̂ ∈ (0, 1) do not yield drastic unphysical behaviors
[2,17,63,64].

In test problems with geometric lengthscale (manufacturing)
constraints, we employ known constraints c j ≤ 0 of the form
[6,51]

G {s ,v}(ρ̂(x , y ))≤ 0, (8)

where G s and Gv enforce, respectively, the lengthscale con-
straints on the solid (εmax) and void (εmin) phases of the design.
(Note that, in order to constrain the lengthscales at edges and
corners of �d , the design region is padded with the neighboring
materials, and filtered through the padding. The design degrees
of freedom are within the design region, but the padding and
filtering lead to structures outside the design region in order to
have smooth transition to the surrounding material.)

Another important use of constraint functions is for “max-
imin” objectives in which one is maximizing the minimum of
K > 1 objective functions, i.e., 8=mink8k for K functions
8k(E(ρ), ρ), where k ∈ {1, . . . , K }. This arises in the metalens
problem of Section 3.B, for example. Although such a8 is non-
differentiable where two8k values cross, it can be transformed
into a mathematically equivalent differentiable problem by an
“epigraph” reformulation [11], which introduces a new design
variable t ∈R along with a set of K nonlinear constraints:

max
ρ

[
min

k
8k

]
=max

ρ,t
t

s.t. t −8k(E(ρ), ρ)≤ 0, k ∈ {1, . . . , K }, (9)

in addition to any other (e.g., lengthscale) constraints of the
problem.

These optimization problems are solved using gradient-based
algorithms to obtain a local minimum from a given starting
ρ, relying on adjoint sensitivity analysis [2,65] to efficiently
compute the gradients of the objective function and constraints
with respect to the design variables ρ. Except where otherwise
noted below, we used the CCSA/MMA optimization algorithm
to obtain local optima [66].

Of course, there are many other ways to express the design
degrees of freedom, as well as different algorithms for imposing
constraints or for solving the optimization problem. Slight
changes may result in a different local optimum, but in the
problems below we find many local optima with comparable
performance, and we expect that should continue to be true
for any other algorithm with similar design freedom. Severely
reducing the space of allowed designs, such as in the “1d”
grating-design example of Section 3.F, is likely to reduce per-
formance, but it is still informative to compare to reference
designs with more freedom in order to quantify this degra-
dation (and drastically worse performance may spur further
investigation).

B. RGB Metalens

Inverse design of an aberration-free metalens [67] involving
a single focus at multiple wavelengths is a well-studied design
problem in photonics topology optimization [24,68–70], and
the design of a metalens is thus chosen as the first test problem.
One relevant design objective is to maximize the minimum
intensity at the focal point for the RGB wavelengths. This is
known as worst-case or maximin optimization [11]. Efficiently
computing the fields at the focal point a large distance� λ from
the lens can involve a near-to-far-field transformation [71] or
integral-equation methods [54–56].

As depicted in Fig. 3(a), in this test problem we look for the
dielectric profile ε(x , y ) ∈ [εmin, εmax], “binarized” (almost)
everywhere to εmin or εmax, in the design domain, �d con-
sisting of an L x = 10 µm by L y = 1 µm region that takes
light at normal incidence at three wavelengths (λ1 = 450 nm,
λ2 = 550 nm, λ3 = 650 nm) and focuses it at a spot, r0, which
is located R = 2.4 µm above the center point in the design
domain. Specifically, the objective is to maximize the worst-case
electric-field intensity 8 over the targeted wavelengths at the
focal spot:

8=

[
min
λ j
|E j (r0)|

2

]
, (10)

where E j (r0) is the electric field evaluated at the focal point
at each of the three frequencies ω j =

2πc
λ j

, which satisfies the

time-harmonic Maxwell Eq. (4) in two dimensions (x y ) with
outgoing/radiation boundary conditions, where the current
source/forcing is chosen to create a normal-incident planewave
[71]. Two polarizations were considered, depending on the lens
configuration, as discussed below, and we impose lengthscale
constraints as in Section 3.A.

For the RGB test problem ε(r) is interpolated linearly from
the projected design field ρ̂ (Section 3.A) between the minimum
εmin = 1 and maximum εmax = 5.76 (chosen somewhat arbi-
trarily, but in the range of materials such as GaN and LiNbO3).
The worst-case objective 8 was reformulated into a differ-
entiable problem by an epigraph formulation Eq. (9). The
enhancement is non-dimensionalized, at each wavelength, by
dividing by the intensity obtained for an empty design (that is,
the intensity |Eρ=0(r0)|

2 when ε= 1 everywhere in the design
region). Equivalently, we normalize the incident field so that
|Eρ=0(r0)|

2
= 1.
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Fig. 3. RGB metalens design problem with in-plane E -field polarization (a) Schematic of the problem and setup; blue shaded region represents the
padding to the design region: the bottom was padded by the substrate material and other sides were padded by air. (b) Sample design and its field pat-
tern at λ= 650 nm. (c) Plot of FOMs versus lengthscales with insets showing some designs at various lengthscales; shading corresponds to the range
of FOMs and markers correspond to the average.

Fig. 4. RGB metalens design problem with out-of-plane E -field polarization. (a) Schematic of the problem and setup; blue shaded region repre-
sents the padding of air to all sides of the design region. (b) Sample design and its field pattern at λ= 650 nm. (c) Plot of FOMs versus lengthscales
with insets showing some designs at various lengthscales; shading corresponds to the range of FOMs and markers correspond to the average; the red
star indicates a VIE design without lengthscale constraint.

We considered the test problem in two different configura-
tions: (1) in-plane E -field polarization with a substrate layer
of ε= 5.76 beneath the design [Fig. 3(a)] and (2) out-of-plane
E -field polarization without a substrate beneath the design
[Fig. 4(a)]. (The latter substrate-free configuration is more
accessible to integral-equation methods.) We tested three inde-
pendent implementations of topology optimization using three
different methods for solving Maxwell’s equations: (a) finite-
difference time-domain (FDTD) method, implemented in the
free and open-source software package Meep [16,17,51], with
resolution of 50 pixels per µm, (b) frequency-domain finite-
element method (FEM) implemented in MATLAB [72] with
COMSOL Multiphysics [73], with resolution of 100 pixels per
µm, and (c) a volume integral-equation method (VIE) [54–56],
with resolution of 100 pixels perµm.

For configuration (1), we designed structures at different
lengthscales separately with the FDTD and the FEM topology
optimization. The performance of the optimized structures
was then cross-validated (i.e., the FEM-optimized design was
evaluated in FDTD and vice versa), with discrepancy found to
be below 5%. An exemplary design and its electric-field pat-
tern are shown in Fig. 3(b). We plotted FOM [figure of merit)

versus measured lengthscale in Fig. 3(c). The optimized struc-
tures display comparable performance for a given lengthscale,
and gradually degrade as the minimum lengthscale increases.
(Because different methods happen to find different local
minima, and the solution can jump between minima as the
lengthscale is changed, it is not surprising that the curves do not
coincide and may not be completely smooth.)

In configuration (2), without a substrate, we again opti-
mized structures at different lengthscales in FDTD, and
cross-validated the performance with a volume-integral-
equation (VIE) solver [55]. We also designed a structure using
VIE, without a lengthscale constraint, and optimized for the
average instead of worst-case; the resulting VIE design exhibits
a measured minimum lengthscale of ≈ 20 nm. One design
example and its field pattern are shown in Fig. 4(b), and FOMs
versus lengthscale is plotted in Fig. 4(c). As in configuration (1),
the two approaches exhibit roughly comparable performance at
a given lengthscale.

In both configurations, we started the optimization with
a uniform initialization at ρ = 0.5, but due to differences in
discretization and other hyperparameters we often converged
to different local optima from different simulation techniques.
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Fig. 5. (a) Schematic of a waveguide mode converter. (b) Field amplitude distribution and (c) scattering parameter spectra for an optimized mode
converter. Circles indicate the wavelengths targeted during optimization. (d) Worst-case transmission/conversion efficiency and (e) worst-case reflec-
tion for a collection of mode converter designs optimized using different schemes.

Indeed, we find that this problem exhibits many local optima
that achieve comparable performance; for example, we also
tried ρ = 0 and ρ = 1 initializations at each lengthscale, and
we observed that roughly 70% of those results were within
10%, in either direction, of those in Figs. 3(c) and 4(c), and the
remaining 30% were within a factor of two worse.

C. Waveguide Mode Converter

Components for efficiently coupling light between orthogonal
time-harmonic modes of optical waveguides are important for
quantum information processing [74] and optical communi-
cations [75–79], where higher-order modes offer additional
degrees of freedom for encoding information. Additionally,
the ability to address and probe higher-order spatial modes
of integrated waveguides is crucial for applications in nonlin-
ear optics, such as sum- and difference-frequency generation
[80]. Topology optimization has been applied to various
mode-conversion problems in integrated optics [1,17,25–28].

As a test problem for inverse design, mode conversion probes
an implementation’s ability to excite and extract different modes
of a multi-mode waveguide, to characterize both transmission
and reflection of individual modes, and to optimize perform-
ance over a broad continuous bandwidth (as opposed to the few
discrete wavelengths of the RGB metalens test problem).

A two-dimensional test problem is depicted schematically
in Fig. 5(a), showing an integrated waveguide mode-converter
design problem with input and output dielectric waveguides.
The design region has dimensions 1.6 µm× µm with 400-nm-
wide silicon (ε= 12.25) input and output waveguides. The
surrounding cladding region and the “void” material inside the
design region both consist of silicon dioxide (ε= 2.25). The
electric field is polarized in the z (out-of-plane) direction. The

objective of the design problem is to convert input power from
the fundamental mode of the input waveguide on the left to
the second-order mode of the output waveguide on the right,
with maximal efficiency (defined more precisely below) over
an operating bandwidth of 1260–1300 nm. This problem is
based on the waveguide mode-converter design problem pre-
sented in [52]. An optimized waveguide mode converter (with
the electric-field amplitude) and its performance are shown
in Figs. 5(b) and 5(c), respectively. The reflection back into
the fundamental mode (S11) and the transmission from the
fundamental mode to the second-order mode (S21) over the full
operating bandwidth are shown in Fig. 5(c).

Figures 5(d) and 5(e) compare the worst-case transmission
and reflection, respectively, for several designs, each optimized
to satisfy varying minimum-lengthscale constraints. The objec-
tive function is the worst-case of insertion loss (1− |S21,λ|

2)

and reflection (|S11,λ|
2) over all sampled wavelengths (λ) within

the operating bandwidth:

8=max
λ

(
1− |S21,λ|

2, |S11,λ|
2). (11)

Note that the S matrix coefficients are computed from the
E and H fields by an overlap integral (over the port cross
section) with the corresponding input/output port-mode
profile Ek and Hk (normalized to unit power), of the form
Sk =

1
4

∫
[E∗k ×H+ E×H∗k ] · dA [81]. These are normalized

by input power, so that |Sk |
2
= 1 corresponds to 100% trans-

mission or reflection. Results from two different optimization
and simulation algorithms are shown in Figs. 5(d) and 5(e),
where each data point corresponds to the best performing
feasible design from independent optimization runs. Data
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marked by blue dots are from a filter-and-projection parame-
terization [61] scheme for density-based topology optimization
(Section 3.A), with minimax optimization via the epigraph
formulation of Eq. (9). These designs were optimized using
the Meep FDTD (finite-difference time-domain) software
[16,17]. Data marked by red dots are from a straight-through
estimator (STE) and conditional-generator strategy [52] opti-
mized using the open-source Ceviche FDFD (finite-difference
frequency-domain) simulator [82,83], with a conceptually sim-
ilar alternative objective function to minimize a combination
of the deviation in transmission and reflection from an ideal
filter [52]; the exact expression is given in Supplement 1. A
10 nm Yee grid was used for all simulations. More details on each
optimization procedure are provided in Supplement 1.

Regardless of which simulator was used for optimization,
the performance reported in Figs. 5(d) and 5(e) was obtained
by simulating the design in Ceviche [83] and cross-validated
in Meep. Across both optimization strategies, we observe a
trend of gradually improving performance (higher worst-case
transmission and lower worst-case reflection) for designs with
smaller lengthscales, but good performance is still attained for
relatively large lengthscales 100 nm. We also find that the mea-
sured lengthscale, reported on the x -axis of Figs. 5(d) and 5(e),
is within 10% of the imposed lengthscale for the conditional
generator + STE designs and within 20% for the filter-and-
projection parameterized designs. For each lengthscale, several
local optima are shown in Figs. 5(d) and 5(e) for the conditional
generator + STE method. These designs have a variation of
roughly 15% around the worst-case reflection averaged over
all designs at each lengthscale. The variation in the worst-case
transmission is 10%–30% around the average value for different
lengthscales. Results are similar for local optima obtained using
the filter-and-projection method via Meep FDTD.

D. Metallic Concentrator

Metallic structures designed to concentrate the electromagnetic
field have many applications for the enhancement of nonlinear
effects and light-matter interaction [84,85] such as Raman
sensing [86,87]. As a test problem for optical design, they also
exercise the ability of a solver to handle metallic materials and
plasmonic resonance phenomena [88], which may require
careful handling when employing density-based topology
optimization for the inverse design [63]. Although particular
applications are often best served by a holistic approach of opti-
mizing the full physical process end-to-end [87], for the purpose
of a testsuite we consider a simplified two-dimensional problem:
designing a structure that concentrates the electromagnetic field
from an incident plane wave to a point in space. (Unlike the
far-field focus of the RGB metalens in the previous section, this
is a near-field focusing problem.)

Thus, in this test problem we seek to maximize the electric-
field intensity at a point in space by tailoring the geometry of
a metallic particle being illuminated by an electromagnetic
plane wave (wavelength λ= 532 nm) propagating through free
space (ε= 1) and polarized in-plane. Like in the RGB focusing
problem, we consider a 2d model problem to reduce the compu-
tational burden. (The in-plane polarization makes the problem
more interesting because it allows field singularities to arise at
sharp tips [89], which can have a strong impact on near-field

intensity.) To achieve point focusing, as in Section 3.B we take as
the objective function

8= |E(r0)|
2, (12)

corresponding to intensity at the focal point r0, from an incident
planewave, non-dimensionalized by dividing8 by the intensity
obtained for vacuum (no metal, i.e., the incident intensity). As
we are interested in near-field focusing, we define an annulus-
shaped design domain [87], centered at r0, with outer radius
rd = 100 nm and inner radius of r i = 10 nm, in which the
metallic (silver, index n = 0.054+ 3.429i [90]) particle under
design is located; see Fig. 6(a). The inner radius r i > 0 of the
design domain is useful to regularize the problem: similar to
Section 3.E, if the design were allowed to converge to an arbi-
trarily sharp tip at r0, the resulting optimal 8 would diverge
with increasing computational resolution. We again use density-
based topology optimization, with lengthscale constraints, as in
Section 3.A.

To avoid spurious resonant phenomena that can arise for
metallic materials, the relative permittivity ε is interpolated
from the projected density ρ̂ using a formula involving the com-
plex refractive index n + iκ , as explored in detail for topology
optimization in [63]. This interpolation is given by the formula

ε(r)= (n(ρ̂(r))2 − κ(ρ̂(r))2)− i(2n(ρ̂(r))κ(ρ̂(r))),

n(ρ̂(r))= nair + ρ̂(r)(nAg − nair),

κ(ρ̂(r))= κair + ρ̂(r)(κAg − κair).
(13)

We implement and cross-validate exemplary solutions using
two independent software implementations of density-based
topology optimization via the finite-element method (FEM), as
described next. In both cases, the model problem is discretized
using the finite-element method (FEM) and an element-wise
constant ρ-field is employed. Notably, a mesh with h = 1 nm
side-length is used to discretize the design domain: such extreme
resolution is employed to accurately capture and fully exploit
the near-field effects at the surface of the metal.

First, we use a COMSOL Multiphysics [73] based tool,
originally developed for designing plasmonic nanoparticles
to enhance single-molecule Raman scattering [87]. Here, a
minimum lengthscale of 6 nm for the radius of curvature of the
metallic particle is enforced. The resulting optimized metallic
particle and electric-field norm for an incident plane wave at
the target wavelength is shown in Fig. 6(b), clearly illustrating
the focusing effect of the particle. The green circles in the panel
outline the outer and inner radii of the design domain.

For cross-validation and comparison, we also used an inde-
pendent implementation based on the free/open-source FEM
tool Gridap [19,92], originally developed to maximize the
spatially averaged (many molecule) Raman scattering [91]. In
this case, no lengthscale constraint was explicitly imposed, but
the inner radius r i > 0 nevertheless ensures a non-diverging
optimum as mentioned above. Indeed, known bounds [93,94]
suggest that optimal performance may increase as 1/r 2

i with the
inner radius r i of the annular design region.

The two silver particles resulting from solving the design
problem using the two different codes, along with a wavelength

https://doi.org/10.6084/m9.figshare.24885930
https://doi.org/10.6084/m9.figshare.24885930
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Fig. 6. Focusing of the electric field using a metallic nanoparticle. (a) Schematic of the design problem showing an incident planewave that is to
be concentrated at the center of the design region marked by the black dot. (b) |E|-field using saturated colors (inferno) to illustrate the enhance-
ment around the particle, with the particle design overlay (dark gray) at λ= 532 nm and design domain outline (green). (c) Wavelength sweep of
|E|2-enhancement relative to empty space, (black) design optimized using software developed for [87], (red) design optimized using software devel-
oped for [91] freely available at [92].

sweep of the |E(r0)|
2-enhancement, are shown in Fig. 6(c). Both

optimized particle pixel maps were smoothed and curve fitted.
The performance of the optimized designs was then validated
using a high-resolution conforming mesh with second-order
basis functions using COMSOL Multiphysics. Despite minor
differences between the two designs, the enhancement in
|E(r0)|

2 at the target wavelength λ= 532 nm (compared to the
incident intensity) is within 5% of one another. Furthermore,
we also tried starting with five different random initial struc-
tures, and all resulted in performance within 5% of each
other.

E. Cavity Design

Resonances confine electromagnetic waves for a long time
in a given volume of space, and are crucial to a wide variety
of applications requiring enhanced light-matter interactions
and/or narrow-band frequency sensitivity. A common figure
of merit for a resonance is the local density of states (LDOS),
corresponding to the power emitted by a point-dipole source
placed at the point on interest, since the LDOS quantifies
“Purcell enhancement” of spontaneous emission [71]. Several
works have studied inverse design of the LDOS [34–36,95],
and it poses a useful challenge as a test problem because of its
extreme sensitivity to the minimum lengthscale. In 3d, or in
2d with the in-plane electric-field polarization, the electric
field [89,96,97], and hence the LDOS, diverges at sharp tips
[35,98], so optimization without a lengthscale constraint or
other regularization would yield an LDOS that diverges with
the computational resolution. Optimization of resonant modes
is challenging for another reason: the single-frequency LDOS
for a long-lifetime (or high “quality factor” Q [99]) resonance is
very sensitive to small changes in geometry (which can shift the
resonance off the target frequency), leading to an ill-conditioned
“stiff” optimization problem that causes many algorithms to
converge slowly [34]. Hence, this problem is especially useful for
testing inverse-design algorithms.

In particular, we look for the dielectric profile ε(x , y ), con-
trolled by the design field ρ ∈ [0, 1] as in Section 3.A, in a

1λ× 1λ square region aiming to maximize the local density of
states (LDOS) from a unit in-plane dipole source at the cen-
ter (i.e., in-plane electric-field polarization) for a wavelength
λ= 1.55 µm. A schematic is shown in Fig. 7(a). The design
region’s permittivity varies from εmin = 1.0 to εmax = 12.11,
and the surrounding material is εmin = 1.0 with outgoing
boundary conditions (implemented in our case using PML). As
noted above, it is crucial to impose a minimum lengthscale (or
similar regularization) on the design region to avoid a diverging
result, and the resulting optimized LDOS is characterized as
a function of the measured minimum lengthscale (Section 2).
(The finite diameter of the design region also regularizes the
problem by effectively limiting the attainable Q, which would
otherwise lead to a diverging LDOS for lossless materials in an
unbounded design domain [34].)

The LDOS is proportional (with some normalization factor
[71]) to the power radiated by the source ∼

∫
Re[E∗ · J] =

ReE x (0, 0), where the current density J= x̂δ(x )δ(y ) is a delta
function at the origin. (ReE x (0, 0) is finite at the origin, in con-
trast to ImE x (0, 0), because

∫
Re[E∗ · J] must yield the finite

radiated power in accordance with Poynting’s theorem [96].)
The optimization objective is therefore simply to maximize

8= ReE x (0, 0),

and since this is strictly positive, one can equivalently minimize
1/ReE x (0, 0) [34]. Our reference implementations below
employed density-based topology optimization, with linear
material interpolation and explicit lengthscale constraints on
the solid and void regions as in Section 3.A.

We separately performed the design with FDTD in Meep
[16,17,51] and FEM implemented in MATLAB [72] with
COMSOL Multiphysics [73]. Simulations were performed at a
resolution of 200 pixels/µm.

The FDTD and FEM designs were cross-validated, with
discrepancy below 10%. We non-dimensionalized the LDOS
by dividing it by the LDOS of vacuum: although there is an
analytical formula for the power emitted by a dipole in vacuum
[96], it is better to calculate the vacuum LDOS numerically
using the same discretization scheme with ε= 1, so that any
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Fig. 7. Cavity design problem with E -field in-plane polarization (a) Schematic of the problem and setup; blue shaded region represents the
padding of air to all sides of the design region. (b) Sample design and its Hz field pattern. (c) Plot of FOMs versus lengthscales on log-scales with insets
showing some designs at various lengthscales.

normalization or units of the simulation method are cancelled.
One example design and its field pattern are shown in Fig. 7(b),
and FOM versus lengthscale for many designs is plotted in
Fig. 7(c). We find that LDOS optimization encounters many
local optima of varying performance, several of whose data
points are shown in Fig. 7(c). Some of these are for different
random initial ρ, but even for the same initial ρ = 0.5, corre-
sponding to the inset structures, we find that the local optimum
obtained is very sensitive to discretization and hyperparame-
ters of the optimization. Nevertheless, we find that many local
optima achieve a comparable LDOS, within the same order of
magnitude.

While a more in-depth study of the LDOS is outside the
scope of this article, it is interesting to note that Fig. 7(c) empir-
ically exhibits an LDOS scaling roughly with 1/lengthscale3.
Future work may relate such observations to fundamental
bounds on the attainable LDOS [35,36].

F. 3d Metagrating

An important application of topology optimization is the design
of a metagrating that can deflect light into a single diffraction
order with high efficiency. Previous works have demonstrated
freeform metagratings for large-angle, multifunctional beam
deflection designed via local [29–31] and global [32,33] topol-
ogy optimization. Here, we use 3d metagratings as our model
system to benchmark the results between different solvers. This
offers a fully 3d test problem that only requires modest comput-
ing resources, since it is periodic in the x and y directions with
periods smaller than 2λ.

The metagrating consists of freeform silicon patterns (we
used a resolution of 90 points per wavelength) that deflect
normally incident light from a silica substrate to the+1 diffrac-
tion order in air [Fig. 8(a)]. The metasurface is periodic in
both x (period 3x = 1371 nm) and y (period 3y = 525 nm)

directions, with a constant cross section in z (consisting of a
325-nm-thick silicon layer on top of a semi-infinite silica sub-
strate, with εsilicon = 3.452 and εsilica = 1.452, respectively). The
figure of merit of this problem is the diffraction efficiency to the
(mx ,m y )= (+1, 0) diffraction channel, corresponding to a
50◦ deflection angle in the x z plane for the chosen wavelength
and period. Here, mx and m y denote the diffraction orders that
scatter the in-plane wavevector components (kx , ky ) from (0,0)
to (kx +mx 2π/3x , ky +m y 2π/3y ). The diffraction effi-
ciency is defined as the intensity (power/area) of light deflected
to the desired diffraction order, normalized to the light intensity
incident from within the silica substrate, for the p polarization
(incident electric field in the x direction) at a vacuum wave-
length λ= 1050 nm. The optimization objective can therefore
be formulated as

8= |S(+1,0)|
2, (14)

where S(+1,0) is the amplitude of the output diffraction channel
(whose squared magnitude is proportional to power per unit cell
in that channel), computed by an overlap integral with E and H
as in Section 3.C and normalized so that8= 1 corresponds to
100% conversion of the incident power.

We applied two independent density-based topology-
optimization implementations to this problem, as in
Section 3.A. First, we employed a free/open-source rigor-
ous coupled-wave analysis (RCWA) solver [57] (also called
a modal-expansion method) with a resolution of roughly 90
points per wavelength (i.e., a pixel size of roughly 12 nm) in
the x y plane. Second, we employed the Meep FDTD simula-
tion and topology-optimization method [16,17,51], both for
cross-validating the RCWA results and for an independently
optimized design. In general, this problem exhibits a large
number of distinct local optima that yield similar efficiencies
(>90%).
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(b)

(a)

(d)RCWA optimized RCWA optimized FDTD optimized FDTD optimized(c) (e)
93.2% (RCWA)
93.8% (FDTD)

96.8% (RCWA)
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93.7% (RCWA)
92.5% (FDTD)

Fig. 8. 3d metagrating deflector designs. (a) Schematic of the problem setup. The metagratings consist of freeform silicon patterns and deflect nor-
mally incident light to the+1 diffraction order. (b)–(e) Patterns of refractive indices for four structures optimized by Reticolo RCWA (b) and (c) and
Meep FDTD (d) and (e). The black and white regions represent silicon and air, respectively.

To reduce device sensitivity to fabrication imperfections, the
RCWA approach employed a form of “robust” optimization
[100]: at each iteration, the optimization maximizes the average
performance of nominal, dilated, and eroded designs. As in
Section 3.A, we filter and project the design field ρ, but now
the projection of Eq. (7) is done in three ways: projecting with
η= 0.5 yields the ideal (nominal) design pattern ρ̂i . Eroded and
dilated patterns, denoted by ρ̂e and ρ̂d , are generated from the
same projection with η values above and below 0.5, respectively.
The filter radius r f and the η parameters are related to the extent
of erosion and dilation, which is described by the edge deviation
[100]. In this work, the edge deviation is set as 5 nm. Given the
diffraction efficiencies η of the eroded, dilated, and nominal
patterns, we optimized the sum of η(1− η/2) for the three
designs, which corresponds to averaging the gradients of η with
weights 1− η (so that the evolution of the design is dominated
by the lowest-η variant). The free/open-source code and more
details of the RCWA-based algorithm are available at [101,102].

The metagrating problem (whether or not robustness is
included) exhibits many distinct local optima, but they typically
have similar diffraction efficiencies, which are >90% for 2d
design patterns and ∼80% for 1d design patterns. Starting
from randomly initialized geometries, the permittivity pro-
files of two optimized metagratings in a unit cell are shown
in Figs. 8(b) and 8(c). The two metagratings have diffraction
efficiencies of 93.2% and 96.8%; this performance is also
cross-validated by Meep, which reports 93.8% and 95.0%,
respectively, for the same structures. We also performed topol-
ogy optimization using Meep [17] to maximize the nominal
efficiency η(no robustness, i.e., no eroded or dilated structures).
The Meep-optimized structures, evolved from a homogeneous
starting design with ε= (εsilicon + 1)/2, are shown in Figs. 8(d)
and 8(e). For the design in Fig. 8(d), the diffraction efficiencies
at λ= 1050 nm evaluated by FDTD and RCWA are 92.5%
and 93.7%, respectively. To illustrate the effect of reducing
the number of degrees of freedom, we also include a design in
Fig. 8(e) in which the density ρ(x ) was restricted to vary only
along the x direction, resulting in a 1d grating structure with a

diffraction efficiency at λ= 1050 nm of 84.3% (cross-validated
in RCWA as 83.0%) starting from a homogeneous structure
with ε= (εsilicon + 1)/2. All these designs were optimized
without lengthscale constraints. The estimated minimum
lengthscales of the designs in Figs. 8(b)–8(e) are 66, 62, 54, and
35 nm, respectively. [As explained in Section 2, our lengthscale
metric disregards features at the 1–2 pixel level as discretization
artifacts; for example, the single white pixel visible in Fig. 8(b)
is ignored.] Similar to Section 3.C (since a diffraction grating
is mathematically a form of mode converter), however, we
expect the performance to degrade only gradually as moderate
lengthscale constraints are imposed.

G. Dispersion Engineering

Topology-optimization methods have been widely employed to
tailor the dispersion relation of the photonic crystals, including
enlarging bandgaps [2,103], reducing the group-velocity dis-
persion (GVD) of slow-light waveguides [37,38], and obtaining
nontrivial topological properties [104,105]. Mathematically,
such tasks impose unique challenges because they involve
optimizing the solution of eigenvalue problems, as opposed
to linear scattering equations as in the previous sections.
Therefore, we include an exemplary dispersion engineering
test problem involving the design of broadband slow-light
(low-group-velocity) waveguides.

In particular, we consider waveguide modes confined by the
photonic bandgap of a photonic crystal (PhC) consisting of a
periodic array (triangular lattice) of air (ε= 1) holes in silicon
(ε= 12.08) for the Hz (“TE”) polarization in 2d [99]. We
optimize a design region forming a “line defect” that breaks the
periodicity along one direction (orthogonal to the waveguide,
denoted y ) and thereby introduces one or more localized modes
into the bandgap [99]. These guided modes are found via the
band structure calculations of the periodic a × b supercell [see
Fig. 9(a), Si = black, air = white]. The Hz eigenfunctions in
the supercell solve Eq. (5) as an eigenvalue problem by taking
K(r)= 0 [99], subject to Bloch-Floquet boundary conditions
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with a Bloch wavevector (k, 0) stated as

Hz(x , a)= e ika Hz(x , 0), Hz(0, y )= Hz(b, y ). (15)

For a given eigenvalueω, the dispersionω(k) has a propagation
velocity given by the group velocity vg [99]:

vg =
c

ng
=−

∂ω

∂k
, (16)

where ng defines the “group index” of the guided mode.
Here, our slow-light design problem is to obtain a nearly

constant group index ng matching a target n∗g = 25 over a
given bandwidth 1ω, or equivalently over a given range of
wavenumbers1k =1ωn∗g /c . More precisely, we minimize the
maximum squared error (ng − n∗g )

2 over a given set of Bloch
wavenumbers ki , where for convenience we approximate ng

by a finite-difference approximation for adjacent ki ’s (one can
alternatively use analytical differentiation with k [106]). We also
include band-separation constraints to keep the targeted modes
gap-guided as in [38]. This results in the optimization problem

min
ρ

max
η,i∈{2,. . .,m}

(
c (ki − ki−1)

ω
η
n(ki−1)−ω

η
n(ki )

− n∗g

)2

s.t. max
j

ω
η
n−1(k j ) ≤ a1 min

i
ωηn(ki ),

ωηn(0) ≥ a2 max
i

ωηn(ki ),

min
j

ω
η
n+1(k j )≥ a2 max

i
ωηn(ki ), (17)

where ρ(x , y ) ∈ [0, 1] is the design density (discretized as
described below), η ∈ {ηd , ηi , ηe } represents three design real-
izations with different thresholds (see below) to improve the
design robustness to geometric imperfections with ηd , ηi , and
ηe corresponding to the dilated, normal, and eroded designs, ki

denotes the target wavenumber at each point i , while a1 < 1 and
a2 > 1 are the band-separation factors (forcing ωn to lie above
ωn−1 by a factor 1/a1 and belowωn+1 by a factor 1/a2).

In our exemplary implementation, the finite-element
method is employed to solve the eigenvalue problem. The
supercell in Fig. 9(a) is discretized with 40× 408 square four-
node elements (40 elements/a ). Figures 9(c), 9(e), and 9(f )
show the band structure and corresponding group index for
the even-symmetry guided modes, along with the Hz pattern
of a guided mode. As the edge k = π/a of the Brillouin zone is
approached, the group velocity goes to zero (ng →∞), and the
group-velocity dispersion diverges—this makes it challenging to
operate slow-light devices without signal distortion [107], and
makes it desirable to optimize a structure for nearly constant ng

(low dispersion) over a wide k band.
A linear interpolation scheme for the inverse of relative

permittivity is employed, generated using a threshold value
η ∈ {ηd , ηi , ηe }, given as

1

εη(x , y )
=

1

εair
+ ρ̂η(x , y )

(
1

εSi
−

1

εair

)
. (18)

Here, a supercell is designed for a target group index of
n∗g = 25 with seven equidistant points in the target wavenumber

interval k ∈ [0.3875, 0.4625] × 2π/a and band-separation
factors of a1 = 0.9 and a2 = 1.1. Similar to Section 3.F, three
design realizations are generated using projection thresholds
η ∈ [0.35, 0.5, 0.65] with a filter radius r f = a/8. The design
domain is illustrated in Fig. 9(b). Figures 9(d), 9(e), and 9(g)
show the band structure, group index, and a guided mode for the
nominal optimized design (η= 0.5). Compared to the initial
design, the optimized design possesses a near-constant group
index profile in the target wavenumber interval.

A smoothed design is extracted using a contour to generate
a high-resolution design with 160 elements/a . The high-
resolution design was cross-checked with commercial software
COMSOL [73] and with the free/open-source MPB [18], and
we found that the low-resolution optimized design [insert in
Fig. 9(d)] was accurate to within 0.3% in frequency and within
3.5% in the group index.

Although we did not explicitly constrain the lengthscale in
this optimized design, a minimum lengthscale (0.0968a ) is
effectively imposed via the three-case robust optimization, and
the final result has a minimum lengthscale of 0.113a according
to the metric in Section 2.

In this study, it is important to choose a proper initial design
so that the band-separation constraints can be satisfied in the
optimization procedure, i.e., so that the starting guess is feasible,
since otherwise the optimization algorithm is not guaranteed
to converge [66]. One cannot simply choose a random ini-
tial ρ. Initial designs with different r2 ranging from 0.2a to
0.275a have been tested. They all result in similar designs with
maximum objective value deviations within 1.5%.

4. CONCLUDING REMARKS

Although the test problems and exemplary solutions in the
preceding structures are mostly based on results from a variety
of publications in the literature, this paper represents more than
a mere compilation. By systematically cross-checking multiple
software packages and optimization algorithms for given struc-
tures and problems in topology optimization, characterizing
results via an independent lengthscale measure, and provid-
ing reproducible data and scripts (in Dataset 1, Ref. [13]), we
hope that this work represents a foundation that can add confi-
dence and speed development of future progress in large-scale
optimization for photonics.

An important complement to a validation suite is a bench-
mark suite, in order to compare the computational efficiencies
of different inverse-design approaches, but we have intention-
ally avoided the latter topic in the present work. Benchmarking
is subtle and complicated, and great care must be taken in deter-
mining precisely what metric is being compared [12]. Indeed,
it is well known that two implementations of the “same” math-
ematical algorithm may have runtimes that differ by an order
of magnitude or more due merely to software-implementation
issues, so often it is desirable to compare efficiency using some
other measure such as the number of forward/adjoint Maxwell
solvers to reach a given objective value, but that raises its own
difficulties when disparate solvers (e.g., time- versus frequency-
domain) are to be compared. Moreover, the greatest demands
on computational efficiency arise when inverse-design is pushed

https://doi.org/10.6084/m9.figshare.25043612
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Fig. 9. Dispersion engineering for slow-light waveguides. Top: (a) initial design and (b) design domain. Bottom: band structures of the (c) initial
and (d) optimized designs for a target group index of n∗g = 25; group index ng versus k; Hz field in the initial and optimized designs.

forward towards more complicated physical settings, more dif-
ficult objectives, and ever larger scales. So, the very accessibility
and common-denominator nature of validation suites may
make them less interesting for exploring the limits of computa-
tional efficiency. Nevertheless, some aspects of the present work
may be useful for future efforts on performance benchmarking,
since of course any benchmarked algorithm must first be val-
idated, and benchmarked algorithms must attain a common
lengthscale metric to be comparable.
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25. J. Lu and J. Vučković, “Objective-first design of high-efficiency,
small-footprint couplers between arbitrary nanophotonic
waveguide modes,” Opt. Express 20, 7221–7236 (2012).

26. L. F. Frellsen, Y. Ding, O. Sigmund, et al., “Topology optimized mode
multiplexing in silicon-on-insulator photonic wire waveguides,” Opt.
Express 24, 16866–16873 (2016).

27. F. Callewaert, S. Butun, Z. Li, et al., “Inverse design of an ultra-
compact broadband optical diode based on asymmetric spatial
mode conversion,” Sci. Rep. 6, 32577 (2016).

28. C. Shang, J. Yang, A. M. Hammond, et al., “Inverse-designed lithium
niobate nanophotonics,” ACS Photonics 10, 1019–1026 (2023).

29. D. Sell, J. Yang, S. Doshay, et al., “Large-angle, multifunctional
metagratings based on freeform multimode geometries,” Nano Lett.
17, 3752–3757 (2017).

30. D. Sell, J. Yang, E. W. Wang, et al., “Ultra-high-efficiency anoma-
lous refraction with dielectric metasurfaces,” ACS Photonics 5,
2402–2407 (2018).

31. D. Sell, J. Yang, S. Doshay, et al., “Periodic dielectric metasurfaces
with high-efficiency, multiwavelength functionalities,” Adv. Opt.
Mater. 5, 1700645 (2017).

32. J. Jiang and J. A. Fan, “Simulator-based training of genera-
tive neural networks for the inverse design of metasurfaces,”
Nanophotonics 9, 1059–1069 (2020).

33. J. Jiang and J. A. Fan, “Global optimization of dielectric meta-
surfaces using a physics-driven neural network,” Nano Lett. 19,
5366–5372 (2019).

34. X. Liang and S. G. Johnson, “Formulation for scalable optimization
of microcavities via the frequency-averaged local density of states,”
Opt. Express 21, 30812–30841 (2013).

35. O. D. Miller, A. G. Polimeridis, M. T. H. Reid, et al., “Fundamental
limits to optical response in absorptive systems,” Opt. Express 24,
3329–3364 (2016).
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