Meep Reference

From AbInitio

Revision as of 18:12, 31 March 2015; Ardavan (Talk | contribs)
(diff) ←Older revision | Current revision | Newer revision→ (diff)
Jump to: navigation, search
Release notes
Meep manual
C++ Tutorial
C++ Reference
License and Copyright

Here, we document the features exposed to the user by the Meep package. We do not document the Scheme language or the functions provided by libctl (see also the libctl User Reference section of the libctl manual).

This page is simply a compact listing of the functions exposed by the interface; for a gentler introduction, see the Meep tutorial. Also, we note that this page is not, and probably never will be, a complete listing of all functions. In particular, because of the SWIG wrappers, every function in the C++ interface is accessible from Scheme, but not all of these functions are documented or intended for end users.

See also our parallel Meep instructions for parallel (MPI) machines.


Input Variables

These are global variables that you can set to control various parameters of the Meep computation. In brackets after each variable is the type of value that it should hold. (The classes, complex datatypes like geometric-object, are described in a later subsection. The basic datatypes, like integer, boolean, cnumber, and vector3, are defined by libctl.)

geometry [list of geometric-object class]
Specifies the geometric objects making up the structure being simulated. When objects overlap, later objects in the list take precedence. Defaults to no objects (empty list).
sources [list of source class]
Specifies the current sources to be present in the simulation; defaults to none.
symmetries [list of symmetry class]
Specifies the spatial (mirror/rotation) symmetries to exploit in the simulation (defaults to none). The symmetries must be obeyed by both the structure and by the sources. See also: Exploiting symmetry in Meep.
pml-layers [list of pml class]
Specifies the absorbing PML boundary layers to use; defaults to none.
geometry-lattice [lattice class]
Specifies the size of the unit cell (which is centered on the origin of the coordinate system). Any sizes of no-size imply (effectively) a reduced-dimensionality calculation (but a 2d xy calculation is especially optimized); see dimensions below. Defaults to a cubic cell of unit size.
default-material [material-type class]
Holds the default material that is used for points not in any object of the geometry list. Defaults to air (ε of 1). See also epsilon-i