Meep FAQ

From AbInitio

(Difference between revisions)
Jump to: navigation, search
Revision as of 03:20, 20 July 2008 (edit)
Stevenj (Talk | contribs)
(Installation)
← Previous diff
Revision as of 03:31, 20 July 2008 (edit)
Stevenj (Talk | contribs)
(Physics)
Next diff →
Line 18: Line 18:
==Physics== ==Physics==
 +===How does the current amplitude relate to the resulting field amplitude?===
 +There is no simple formula relating the input current amplitude ('''J''' in Maxwell's equations) to the resulting fields ('''E''') etcetera, even at the same point as the current. The exact same current will produce a different field (and radiate a different total power) depending upon the surrounding materials/geometry, and depending on the frequency. (This is a physical consequence of the geometry's effect on the local density of states; it can also be thought of as feedback from reflections on the source. As a simple example, if you put a current source inside a perfect electric conductor, the resulting field will be zero. As another example, the frequency-dependence of the radiated power in vacuum is part of the reason why the sky is blue.)
 +
 +If you are worried about this, then you are probably setting up your calculation in the wrong way. Especially in linear materials, the absolute magnitude of the field is irrelevant; the only meaningful quantities are dimensionless ratios like the fractional transmission (the transmitted power relative to the transmitted power in some reference calculation). Almost always, you want to perform two calculations, one of which is a reference, and compute the ratio of a result in one calculation to the result in the reference. For nonlinear calculations, see [[Units and nonlinearity in Meep]].
==Usage== ==Usage==
[[Category:Meep]] [[Category:Meep]]

Revision as of 03:31, 20 July 2008

Meep
Download
Release notes
FAQ
Meep manual
Introduction
Installation
Tutorial
Reference
C++ Tutorial
C++ Reference
Acknowledgements
License and Copyright

The following are frequently asked questions about Meep. Or, at any rate, they will be, now that Meep has been released.

Contents

General

What is Meep?

Meep is our free software for finite-difference time-domain simulation. For the meaning of the name "Meep", see Meep acronym expansions.

Installation

Where can I install Meep?

Meep should run on any Unix-like system, from individual machines to clusters to large parallel supercomputers. We do most of our development on GNU/Linux systems, and precompiled packages are available for Debian and Ubuntu. It should also be possible to install Meep on Windows using the free Cygwin Unix-compatibility environment. Installing Meep from source code requires some understanding of Unix, however, especially to install the various prerequisites, and we recommend consulting a local Unix guru at your institution if you run into trouble.

Guile is installed, but configure complains that it can't find guile

With most GNU/Linux distributions (and Cygwin), packages like Guile are split into two pieces: a guile package that just contains the libraries and executables, and a guile-dev or guile-devel package that contains the header files and other things needed to compile programs using Guile. Usually, the former is installed by default, by the latter is not. You need to install both, which means that you probably need to install guile-dev. (Similarly for any other library packages needed by Meep.)

Physics

How does the current amplitude relate to the resulting field amplitude?

There is no simple formula relating the input current amplitude (J in Maxwell's equations) to the resulting fields (E) etcetera, even at the same point as the current. The exact same current will produce a different field (and radiate a different total power) depending upon the surrounding materials/geometry, and depending on the frequency. (This is a physical consequence of the geometry's effect on the local density of states; it can also be thought of as feedback from reflections on the source. As a simple example, if you put a current source inside a perfect electric conductor, the resulting field will be zero. As another example, the frequency-dependence of the radiated power in vacuum is part of the reason why the sky is blue.)

If you are worried about this, then you are probably setting up your calculation in the wrong way. Especially in linear materials, the absolute magnitude of the field is irrelevant; the only meaningful quantities are dimensionless ratios like the fractional transmission (the transmitted power relative to the transmitted power in some reference calculation). Almost always, you want to perform two calculations, one of which is a reference, and compute the ratio of a result in one calculation to the result in the reference. For nonlinear calculations, see Units and nonlinearity in Meep.

Usage

Personal tools