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Free Materials Online	


Photonic Crystals book: jdj.mit.edu/book	

	


Tutorial slides: jdj.mit.edu/photons/tutorial	

	


Free electromagnetic simulation software	

(FDTD, mode solver, etc.)	


jdj.mit.edu/wiki	
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To Begin: A Cartoon in 2d	


planewave	


 

E,

H ~ ei(


k ⋅ x−ω t )

 


k =ω / c = 2π

λ

 

k

scattering	




…Waves Can Scatter	

here: a little circular speck of silicon	


scattering by spheres:	

solved by Gustave Mie (1908)	


small particles:	

Lord Rayleigh (1871)	

why the sky is blue	


checkerboard pattern: interference of waves	

	
 	
 	
traveling in different directions	




Multiple Scattering is Just Messier?	

here: scattering off three specks of silicon	


can be solved on a computer, but not terribly interesting…	
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for most λ, beam(s) propagate	

through crystal without scattering	

(scattering cancels coherently)	


...but for some λ (~ 2a), no light can propagate: a photonic band gap	


a	
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An even bigger mess?���
zillons of scatterers	


Blech, light will just scatter like crazy	

and go all over the place … how boring!	




Not so messy, not so boring…	


the light seems to form several coherent beams	

that propagate without scattering	


… and almost without diffraction (supercollimation) 	




…the magic of symmetry…	


[ Emmy Noether, 1915 ]	


Noether’s theorem:	

	
symmetry = conservation laws	


	

In this case, periodicity 	


	
= conserved “momentum”	

	
= wave solutions without scattering	

	
 	
[ Bloch waves ]	


Felix Bloch	

(1928)	




A slight change? Shrink λ by 20%���
an “optical insulator” (photonic bandgap)	


light cannot penetrate the structure at this wavelength!	

all of the scattering destructively interferes 	




1887	
 1987	


Photonic Crystals	

periodic electromagnetic media	


with photonic band gaps: “optical insulators”	


2-D

periodic in
two directions

3-D

periodic in
three directions

1-D

periodic in
one direction

(need a 
more 

complex 
topology)	




3µm	


Photonic Crystals in Nature	


wing scale:	


Morpho rhetenor butterfly	


[ P. Vukosic et al., 
Proc. Roy. Soc: Bio. 

Sci. 266, 1403 
(1999) ]	


Peacock feather	


[J. Zi et al, Proc. Nat. Acad. Sci. USA,	

 100, 12576 (2003) ]	


[figs: Blau, Physics Today 57, 18 (2004)]	


http://www.bugguy012002.com/MORPHIDAE.html

[ also: B. Gralak et al., Opt. Express 9, 567 (2001) ]	




Photonic Crystals	

periodic electromagnetic media	


with photonic band gaps: 	

“optical insulators”	


for holding and controlling light	


3D Photonic C rysta l with Defectscan trap light in cavities	
 and waveguides (“wires”)	




Photonic Crystals	

periodic electromagnetic media	


But how can we understand such complex systems?	

Add up the infinite sum of scattering?  Ugh!	


	


3D Photonic C rysta l

High index
of refraction

Low index
of refraction



A mystery from the 19th century	


e–	


e–	
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J = σ


Ecurrent:	


conductivity (measured)	


mean free path (distance) of electrons	


conductive material	




A mystery from the 19th century	
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crystalline conductor (e.g. copper)	


10’s	

of	


periods!	


 

E

 

J = σ


E



A mystery solved…	


electrons are waves (quantum mechanics)	
1	


waves in a periodic medium can propagate 
without scattering:	


	

Bloch’s Theorem (1d: Floquet’s) 	


2	


The foundations do not depend on the specific wave equation.	




Electronic and Photonic Crystals	

atoms in diamond structure	
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strongly interacting fermions	
 weakly-interacting bosons	




Time to Analyze the Cartoon	
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for most λ, beam(s) propagate	

through crystal without scattering	

(scattering cancels coherently)	


...but for some λ (~ 2a), no light can propagate: a photonic band gap	
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Maxwell’s Equations	


James Clerk Maxwell	

1864	


∇ ⋅B = 0

∇ ⋅D = ρ

∇ × E = −
∂B
∂t

∇ ×H =
∂D
∂t

+ JAmpere:	


Faraday:	


Gauss:	


E = electric field	

D = displacement field	

H = magnetic field / induction	

B = magnetic field / flux density	


sources: J = current density	

              ρ = charge density	


constitutive	

relations:	

ε0E = D – P	


H = B/μ0 – M	


material response to fields:	

    P = polarization density	

    M = magnetization density	


electromagnetic fields:	


constants: ε0, μ0 = vacuum permittivity/permeability	

                  c = vacuum speed of light = (ε0 μ0)-1/2	




When can we solve this mess?	

• Very small wavelengths: ray optics	

	

• Very large wavelengths:	


	
quasistatics (freshman E&M)	

	
& lumped circuit models	


[ wikipedia ]	


[ homestead.com ]	


• Wavelengths comparable to geometry?	

	
— handful of cases can be ~solved analytically:	

	
     planes, spheres, cylinders, empty space 	


           — everything else just a mess for computer…?	




Mathematically, use structure of the equations, not explicit solution:���
	
linear algebra, group theory, functional analysis, ���

perturbative methods, …	


This lecture: omit proofs & derivations,	

jump from starting points to results	




Fun with Math	


  

� 

 
∇ ×
 
E = − 1

c
∂
∂t

 
H = iω

c

 
H 

 
∇ ×
 
H = ε 1

c
∂
∂t

 
E +
 
J = −iω

c
ε
 
E 

0	


dielectric function ε(x) = n2(x)	


First task:	

get rid of this mess	


 
∇ ×

1
ε
∇ ×

H =

ω
c

⎛
⎝⎜

⎞
⎠⎟
2 
H

eigen-operator	
 eigen-value	
 eigen-state	


 ∇ ⋅

H = 0

+ constraint	




Hermitian Eigenproblems	


 
∇ ×

1
ε
∇ ×

H =

ω
c

⎛
⎝⎜

⎞
⎠⎟
2 
H

eigen-operator	
 eigen-value	
 eigen-state	


 ∇ ⋅

H = 0

+ constraint	


Hermitian for real (lossless) ε	

well-known properties from linear algebra:	


ω are real (lossless)	

eigen-states are orthogonal	


eigen-states are complete (give all solutions)*	


* Technically, completeness requires slightly more than just Hermitian-ness.	




Periodic Hermitian Eigenproblems	

[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]	


[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]	


if eigen-operator is periodic, then Bloch-Floquet theorem applies:	


 

H (x,t) = ei


k ⋅ x−ω t( ) H k (

x)can choose:	


periodic “envelope”	

planewave	


Corollary 1: k is conserved, i.e. no scattering of Bloch wave	


Corollary 2:        given by finite unit cell,	

	
 	
so ω are discrete ωn(k)	


 

H k



Periodic Hermitian Eigenproblems	

Corollary 2:        given by finite unit cell,	


	
 	
so ω are discrete ωn(k)	

 

H k

ω1	


ω2	


ω3	


ω	


k	


band diagram (dispersion relation)	


map of	

what states	


exist &	

can interact	


?	

range of k?	




Periodic Hermitian Eigenproblems in 1d	

ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	


ε(x) = ε(x+a)	


H (x) = eikxHk (x)

a	


Consider k+2π/a:	
 e
i(k+ 2π

a
)x
H

k+
2π
a

(x) = eikx e
i
2π
a
x
H

k+
2π
a

(x)
⎡

⎣
⎢

⎤

⎦
⎥

periodic!	

satisfies same	

equation as Hk	


 = Hk	

	


k is periodic:	

k + 2π/a equivalent to k	


“quasi-phase-matching”	




band gap	


Periodic Hermitian Eigenproblems in 1d	

k is periodic:	


k + 2π/a equivalent to k	

“quasi-phase-matching”	


k	


ω	


0	
 π/a	
–π/a	


irreducible Brillouin zone	


ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	
 ε1	
 ε2	


ε(x) = ε(x+a)	
a	




Any 1d Periodic System has a Gap	


ε1	


k	


ω	


0	


[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	


Start with	

a uniform (1d) medium:	


ω =
ck
ε1



Any 1d Periodic System has a Gap	


ε1	


ε(x) = ε(x+a)	
a	


k	


ω	

	


0	
 π/a	
–π/a	


[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	


Treat it as	

“artificially” periodic	


bands are “folded”	

by 2π/a equivalence	


� 

e
+ iπ
a
x
,e

− iπ
a
x

→ cos π
a
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , sin

π
a
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 



ε(x) = ε(x+a)	
a	

ε1	


Any 1d Periodic System has a Gap	


ω	


0	
 π/a	


[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	


sin π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

cos
π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

x = 0	


Treat it as	

“artificially” periodic	




ε(x) = ε(x+a)	
a	

ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	


Any 1d Periodic System has a Gap	


ω	


0	
 π/a	


[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	


Add a small	

“real” periodicity	

ε2 = ε1 + Δε	


sin π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

cos
π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

x = 0	




band gap	


Any 1d Periodic System has a Gap	


ω	


0	
 π/a	


[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	


Add a small	

“real” periodicity	

ε2 = ε1 + Δε	


sin π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

cos
π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

ε(x) = ε(x+a)	
a	

ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	
 ε1	
ε2	


x = 0	


Splitting of degeneracy:	

state concentrated in higher index (ε2)	


has lower frequency	




Some 2d and 3d systems have gaps	

• In general, eigen-frequencies satisfy Variational Theorem:	


  

� 

ω1(
 
k )2 = min 

E 1
∇⋅ε
 
E 1= 0

∇ + i
 
k ( ) ×  E 1

2

∫
ε
 
E 1

2∫
c 2

  

� 

ω2(
 
k )2 = min 

E 2
∇⋅ε
 
E 2= 0

εE1
* ⋅E2= 0∫

""

“kinetic”	


inverse	

“potential”	


bands “want” to be in high-ε	


…but are forced out by orthogonality	

è band gap (maybe)	




A 2d Model System	

a	


Square lattice of dielectric rods (ε = 12 ~ Si) in air (ε = 1)	




Solving the Maxwell Eigenproblem	


where magnetic field = H(x) ei(k�x – ωt)	
� 

∇ + ik( ) × 1
ε
∇ + ik( ) ×Hn = ωn

2

c 2
Hn

� 

∇ + ik( ) ⋅H = 0constraint:	


1	


Want to solve for ωn(k),	

& plot vs. “all” k for “all” n, 	


Finite cell è discrete eigenvalues ωn	


Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	




Solving the Maxwell Eigenproblem: 1	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


—Bloch’s theorem: solutions are periodic in k	


kx	


ky	

first Brillouin zone	


= minimum |k| “primitive cell”	


� 

2π
aΓ	


M	


X	


irreducible Brillouin zone: reduced by symmetry	




Solving the Maxwell Eigenproblem: 2a	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis (N)	


3	
 Efficiently solve eigenproblem: iterative methods	


H =H(xt ) = hmbm (x t )
m=1

N

∑ solve:	
 ˆ A H =ω 2 H

Ah =ω 2Bh

Am = bm Â b Bm = bm bf g = f * ⋅g∫

finite matrix problem:	




Solving the Maxwell Eigenproblem: 2b	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


� 

(∇ + ik) ⋅H = 0— must satisfy constraint:	


Planewave (FFT) basis	


H(x t ) = HGe
iG⋅xt

G
∑

� 

HG ⋅ G + k( ) = 0constraint:	


uniform “grid,” periodic boundaries,	

simple code, O(N log N)	


Finite-element basis	

constraint, boundary conditions:	


Nédélec elements	

[ Nédélec, Numerische Math.	


35, 315 (1980) ]	


nonuniform mesh,	

more arbitrary boundaries,	


complex code & mesh, O(N)	

[ figure: Peyrilloux et al.,	


J. Lightwave Tech.	

21, 536 (2003) ]	




Solving the Maxwell Eigenproblem: 3a	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


Ah =ω 2Bh

Faster way:	

	
— start with initial guess eigenvector h0	

	
— iteratively improve	

	
— O(Np) storage, ~ O(Np2) time for p eigenvectors	


Slow way: compute A & B, ask LAPACK for eigenvalues	

	
— requires O(N2) storage, O(N3) time	


(p smallest eigenvalues)	




Solving the Maxwell Eigenproblem: 3b	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


Ah =ω 2Bh
Many iterative methods:	


	
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	

	
     Rayleigh-quotient minimization	




Solving the Maxwell Eigenproblem: 3c	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


Ah =ω 2Bh
Many iterative methods:	


	
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	

	
     Rayleigh-quotient minimization	


for Hermitian matrices, smallest eigenvalue ω0 minimizes:	


ω0
2 = min

h

h' Ah
h' Bh

minimize by preconditioned	

 conjugate-gradient  (or…)	


“variational	

theorem”	
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2d periodicity, ε=12:1	
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2d periodicity, ε=12:1	


E	


H	

TM	


Ez	


–	
 +	


Ez	


(+ 90° rotated version)	


gap for	

n > ~1.75:1	
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2d periodicity, ε=12:1	


E	


H	


E	


H	

TM	
 TE	


a	


fre
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 ω
  (

2π
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λ	
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irreducible Brillouin zone	
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k	




What a difference���
a boundary condition makes…	


ε1	
 ε2	


E1,|| = E2,||	


ε1E1,⊥ = ε2E2,⊥	


E|| is continuous:	

energy density ε|E|2	


more in larger ε	


εE⊥ is continuous:	

energy density |εE|2/ε	


more in smaller ε	


To get strong confinement & gaps,	

want E mostly parallel to interfaces	


TM: ||	
 TE: ⊥	




2d photonic crystal: TE gap, ε=12:1	


Γ M K Γ

0.1

0.2

0.3

0.5

0

0.4

TE gap

a

Γ

M K

TE bands	


TM bands	


gap for n > ~1.4:1	


E	


H	

TE	




3d photonic crystal: complete gap , ε=12:1	


U’ L Γ X W K

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

21% gap

L'

L
K'

Γ
W

U'
X
U'' U
W' K

z

I:  rod layer II:  hole layer

I.	


II.	


[ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ]	


gap for n > ~2:1	




You, too, can compute���
photonic eigenmodes!	


MIT Photonic-Bands (MPB) package:	

http://ab-initio.mit.edu/mpb!



The Mother of (almost) All Bandgaps	


The diamond lattice:	

	


fcc (face-centered-cubic)	

with two “atoms” per unit cell	


(primitive)	


fcc = most-spherical Brillouin zone	


+ diamond “bonds” = lowest (two) bands can concentrate in lines	


Recipe for a complete gap:	


a

x
y

z



fre
qu

en
cy

 (c
/a

)	

The First 3d Bandgap Structure	


K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).	


11% gap	


overlapping Si spheres	


MPB tutorial, http://ab-initio.mit.edu/mpb	


L

Γ
W

X
U
K

for gap at λ = 1.55µm,	

sphere diameter ~ 330nm	




Layer-by-Layer Lithography	


• Fabrication of 2d patterns in Si or GaAs is very advanced	

(think: Pentium IV, 50 million transistors)	


So, make 3d structure one layer at a time	


…inter-layer alignment techniques are only slightly more exotic	


Need a 3d crystal with constant cross-section layers	




A Schematic	


[ M. Qi, H. Smith, MIT ]	




Making Rods & Holes Simultaneously	
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Si	




Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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7-layer E-Beam Fabrication	


5 µm

[ M. Qi, et al., Nature 429, 538 (2004) ]	




The Woodpile Crystal	


[ S. Y. Lin et al., Nature 394, 251 (1998) ]	


gap	


(4 “log” layers = 1 period) 	


http://www.sandia.gov/media/photonic.htm!

Si	


[ K. Ho et al., Solid State Comm. 89, 413 (1994) ]	
 [ H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994) ]	


an earlier design:	

(& currently more popular)	




1.25 Periods of Woodpile @ 1.55µm	

[ Lin & Fleming, JLT 17, 1944 (1999) ]	


gap	


(4 “log” layers = 1 period) 	


1.3µm	


180nm	


Si	
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Two-Photon Lithography	


Atom	


e	
 E0	


hν = ∆E	


hν	
 photon	


hν	

photon	


2	
 2-photon probability ~ (light intensity)2	


lens	


some chemistry	

(polymerization)	


3d Lithography	


…dissolve unchanged stuff	

(or vice versa)	




2µm	


Lithography is a Beast	

[ S. Kawata et al., Nature 412, 697 (2001) ]	


λ = 780nm	

resolution = 150nm	


7µm	


(3 hours to make)	




Holographic Lithography	

[ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ]	


absorbing material	


Four beams make 3d-periodic interference pattern	


(1.4µm)	


k-vector differences give reciprocal lattice vectors (i.e. periodicity)	


beam polarizations + amplitudes (8 parameters) give unit cell	




One-Photon ���
Holographic Lithography	


[ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ]	


huge volumes, long-range periodic, fcc lattice…backfill for high contrast	


10µm	




Mass-production II: Colloids	


microspheres (diameter < 1µm)	

silica (SiO2)	


sediment by gravity into	

close-packed fcc lattice!	


(evaporate)	




Mass-production II: Colloids	


http://www.icmm.csic.es/cefe/!



Inverse Opals	


fcc solid spheres do not have a gap… 	

…but fcc spherical holes in Si do have a gap	


Infiltration 

sub-micron colloidal spheres 

Template 
 (synthetic opal) 3D 

Remove 
Template 

“Inverted Opal” 

complete band gap 

~ 10% gap between 8th & 9th bands	

small gap, upper bands: sensitive to disorder	


[ figs courtesy	

D. Norris, UMN ]	


[ H. S. Sözüer, PRB 45, 13962 (1992) ]	




In Order To Form���
a More Perfect Crystal…	


meniscus	

silica ���
250nm	


Convective Assembly	

[ Nagayama, Velev, et al., Nature  (1993)	


Colvin et al., Chem. Mater. (1999) ] 	


•  Capillary forces during drying cause assembly in the meniscus	

•  Extremely flat, large-area opals of controllable thickness	


Heat Source	


80C	


65C	

1 micron 	

silica spheres	

in ethanol	


evaporate ���
solvent	


[ figs courtesy	

D. Norris, UMN ]	




A Better Opal	
 [ fig courtesy	

D. Norris, UMN ]	




Inverse-Opal Photonic Crystal	

[ fig courtesy	


D. Norris, UMN ]	


[ Y. A. Vlasov et al., Nature 414, 289 (2001). ]	




Inverse-Opal Band Gap	


good agreement	

between theory (black)	

& experiment (red/blue)	


[ Y. A. Vlasov et al., Nature 414, 289 (2001). ]	




Inserting Defects in Inverse Opals ���
e.g., Waveguides	


Three-photon lithography	

with	


laser scanning	

confocal microscope	


(LSCM)	

[ Wonmok,	


Adv. Materials 14, 271 (2002) ]	




Mass-Production III:���
Block (not Bloch) Copolymers	


two polymers	

can segregate,	

ordering into 

periodic arrays	


[ Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. Lightwave Tech. 17, 1963 (1999) ]	


periodicity ~	

polymer block size	


~ 50nm	

(possibly bigger)	




Block-Copolymer 1d Visible Bandgap	


dark/light:	

polystyrene/polyisoprene	


	

n = 1.59/1.51	


reflection for differing homopolymer %	


/ homopolymer	


Flexible material:	

bandgap can be	


shifted by stretching it!	


[ A. Urbas et al., Advanced Materials 12, 812 (2000) ]	




Be GLAD: Even more crystals!	


[ O. Toader and S. John, Science 292, 1133 (2001) ]	


15% gap for Si/air	


“GLAD” = “GLancing Angle Deposition”	


diamond-like	

with “broken bonds”	


doubled unit cell, so gap between 4th & 5th bands	




Glancing Angle Deposition	


[ S. R. Kennedy et al., Nano Letters 2, 59 (2002) ]	


evaporated	

Si	


“seed” posts	


Si	


glancing-angle Si	

only builds up	

on protrusions	


…rotate to	

spiral	




An Early GLAD Crystal	


[ S. R. Kennedy et al., Nano Letters 2, 59 (2002) ]	
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Properties of Bulk Crystals	

by Bloch’s theorem	


(cartoon)	


co
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d 
fre

qu
en

cy
 ω
	


conserved wavevector k	


photonic band gap	


band diagram (dispersion relation)	


dω/dk ≈ 0: slow light	

(e.g. DFB lasers)	


backwards slope:	

	
negative refraction	


strong curvature:	

	
super-prisms, …	


(+ negative refraction)	


synthetic medium	

	
for propagation	




Superprisms	

[Kosaka, PRB 58, R10096 (1998).]	


from divergent dispersion (band curvature)	




Photonic Crystals ���
& Metamaterials	


(cartoon)	


co
ns

er
ve

d 
fre
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en

cy
 ω
	


conserved wavevector k	


photonic band gap	


band diagram (dispersion relation)	


synthetic medium	

	
for propagation	


at small ω	

(long wavelengths λ >> a)	


ω(k) ~ straight line	

~ effectively homogeneous material	


= metamaterials	




Microwave negative refraction	

[ D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Science 305, 788 (2004) ]	


Magnetic (ring) + Electric (strip) resonances	


1 
cm
	


su
pe
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Negative Indices & Refraction	


[ Veselago, 1968	

negative ε, µ ]	
 opposite of ordinary lens:	


only images close objects	


does not require	

curved lens	
 can exceed classical	


diffraction limit	




Negative-refractive���
 all-dielectric photonic crystals	


[ M. Notomi, PRB 62, 10696 (2000). ]	


negative refraction	
 focussing	


(2d rods in air, TE)	


not metamaterials: wavelength ~ a,	

no homogeneous material can reproduce all behaviors	




Superlensing with Photonic Crystals	

[ Luo et al, PRB 68, 045115 (2003). ]	


2/3 diffraction limit	




Negative Refraction���
and wavevector diagrams	


w contours	

in (kx,ky) space	


[ Luo et al, PRB 65, 2001104 (2002). ]	


k|| is conserved	




Classical diffraction limit comes from	

loss of evanescent waves	


… can be recovered by	

resonant coupling to surface states	


(needs band gap)	


2/3 diffraction limit	


Super-lensing	

[Luo, PRB 68, 045115  (2003).]	
 image	




Outline	


•  Preliminaries: waves in periodic media	

•  Photonic crystals in theory and practice	

•  Bulk crystal properties	

•  Intentional defects and devices	

•  Index-guiding and incomplete gaps	

•  Photonic-crystal fibers	

•  Perturbations, tuning, and disorder	




Intentional “defects” are good	


3D Photonic C rysta l with Defects

microcavities	
 waveguides (“wires”)	




420 nm	


[ Notomi et al. (2005). ]	


Resonance	

an oscillating mode trapped for a long time in some volume	


(of light, sound, …)	

frequency ω0	


lifetime τ >> 2π/ω0	

quality factor Q = ω0τ/2	


energy ~ e–ω0τ/Q	


modal	

volume V	


[ Schliesser et al.,	

PRL 97, 243905 (2006) ]	


[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]	


[ C.-W. Wong,	

APL 84, 1242 (2004). ]	




Why Resonance?	

an oscillating mode trapped for a long time in some volume	

	

• long time = narrow bandwidth … filters (WDM, etc.)	

    — 1/Q = fractional bandwidth	

	

• resonant processes allow one to “impedance match”	

   hard-to-couple inputs/outputs	

	

• long time, small V … enhanced wave/matter interaction	

    — lasers, nonlinear optics, opto-mechanical coupling, 	

         sensors, LEDs, thermal sources, … 	




How Resonance?	

need mechanism to trap light for long time	


[ llnl.gov ]	


metallic cavities:	

good for microwave,	

dissipative for infrared	


ring/disc/sphere resonators:	

a waveguide bent in circle,	

bending loss ~ exp(–radius)	


[ Xu & Lipson	

     (2005) ]	


10µm	


 [ Akahane, Nature 425, 944 (2003) ]	


photonic bandgaps	

(complete or partial	


+ index-guiding)	


VCSEL	

[fotonik.dtu.dk]	


(planar Si slab)	




Why do defects in crystals ���
trap resonant modes?���

���
What do the modes look like?	




Cavity Modes	
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Cavity Modes	
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finite region –> discrete ω	




Cavity Modes: Smaller Change	

•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	
 •	
 •	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	


•	

•	


•	




Cavity Modes: Smaller Change	
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Bulk Crystal Band Diagram	




Cavity Modes: Smaller Change	
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Defect Crystal Band Diagram	


Defect bands are 
shifted up (less ε)	


∆k ~ π / L	


with discrete k	


# ⋅λ
2
~ L (k ~ 2π / λ)

confined	

modes	


k not conserved	

at boundary, so	


not confined outside gap	


escapes:	




Single-Mode Cavity	
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Bulk Crystal Band Diagram	


A point defect	

can push up	


a single mode	

from the band edge	


(k not conserved)	


ω0

ω

field decay ~ ω −ω 0

curvature



“Single”-Mode Cavity	
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Bulk Crystal Band Diagram	


A point defect	

can pull down	


a “single” mode	


(k not conserved)	

X	


…here, doubly-degenerate	

(two states at same ω)	




Tunable Cavity Modes	


Ez:	


Radius of Defect  (r/a)
0.1 0.2 0.3 0.4

0.2

0.3

0.4

0.5

Air Defect Dielectric Defectair   bands

dielect ric   bands
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monopole	
 dipole	




Tunable Cavity Modes	


Ez:	


band #1 at M	
 band #2 at X’s	


m
ultiply by exponential decay	


monopole	
 dipole	




Intentional “defects” are good	


3D Photonic C rysta l with Defects

microcavities	
 waveguides (“wires”)	




Projected Band Diagrams	


conserved k!	


1d periodicity	


Γ	
 X	


M	


conserved	


no
t c

on
se

rv
ed
	


So, plot ω vs. kx only…project Brillouin zone onto Γ–X:	


gives continuum of bulk states + discrete guided band(s)	




Air-waveguide Band Diagram	


any state in the gap cannot couple to bulk crystal ⇒ localized	


continuum of	

bulk-crystal modes	




(Waveguides don’t really need a 
complete gap)	


Fabry-Perot waveguide:	


This is exploited e.g. for photonic-crystal fibers…	




Guiding Light in Air!	

mechanism is gap only	
 vs. standard optical fiber:	


	
“total internal reflection”	

    — requires higher-index core	


no hollow core!	


hollow = lower absorption, lower nonlinearities, higher power	




Review: Why no scattering?	


forbidden by gap	

(except for finite-crystal tunneling)	


forbidden by Bloch	

(k conserved)	




Benefits of a complete gap…	


broken symmetry –> reflections only	


effectively one-dimensional	




“1d” Waveguides + Cavities = Devices	

re

so
na

nt
 fi

lte
rs
	


hi
gh

-tr
an

sm
iss

io
n	


sh
ar

p 
be

nd
s	


w
av

eg
ui

de
 sp

lit
te

rs
	


ch
an

ne
l-d

ro
p 

fil
te

rs
	




Lossless Bends	


symmetry + single-mode + “1d” = resonances of 100% transmission	


[ A. Mekis et al.,	

Phys. Rev. Lett. 77, 3787 (1996) ]	




Waveguides + Cavities = Devices	


“tunneling”	


Ugh, must we simulate this to get the basic behavior?	




Temporal Coupled-Mode Theory���
(one of several things called of “coupled-mode theory”)	


[H. Haus, Waves and Fields in Optoelectronics]	


a	
input	
 output	

s1+	

s1–	
 s2–	


resonant cavity	

frequency ω0, lifetime τ	
 |s|2 = power	


|a|2 = energy	


da
dt

= −iω0a −
2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

assumes only:	

	
• exponential decay	

	
   (strong confinement)���
	
• conservation of energy	

	
• time-reversal symmetry	




Temporal Coupled-Mode Theory���
(one of several things called of “coupled-mode theory”)	


[H. Haus, Waves and Fields in Optoelectronics]	


a	
input	
 output	

s1+	

s1–	
 s2–	


resonant cavity	

frequency ω0, lifetime τ	
 |s|2 = flux	


|a|2 = energy	


transmission T	

= | s2– |2 / | s1+ |2 	


1	


w0	


T = Lorentzian filter	


=

4
τ 2

ω −ω0( )2 + 4
τ 2

w	


FWHM	

1
Q
=
2

ω0τ

…quality factor Q	




Resonant Filter Example	


Lorentzian peak, as predicted.	

	


An apparent miracle:	

	


~ 100% transmission	

at the resonant frequency	


cavity decays to input/output with equal rates	

⇒ At resonance, reflected wave	


destructively interferes	

with backwards-decay from cavity	


& the two exactly cancel.	




Wide-angle Splitters	


[ S. Fan et al., J. Opt. Soc. Am. B 18, 162 (2001) ]	




Waveguide Crossings	


[ S. G. Johnson et al., Opt. Lett. 23, 1855 (1998) ]	




Waveguide Crossings	


empty

5x5

3x3

1x1



Channel-Drop Filters	


[ S. Fan et al., Phys. Rev. Lett. 80, 960 (1998) ]	


Perfect channel-dropping if:	


Two resonant modes with:	

• even and odd symmetry	

• equal frequency (degenerate)	

• equal decay rates	


Coupler	


waveguide 1	


waveguide 2	


(mirror plane)	




Enough passive, linear devices…	


Photonic crystal cavities:	

	
tight confinement (~ l/2 diameter)	


	
+ long lifetime (high Q independent of size)	


	
 	
= enhanced nonlinear effects	


e.g. Kerr nonlinearity, ∆n ~ intensity	




A Linear Nonlinear Filter	


in	
 out	


Linear response:	

Lorenzian Transmisson	
 shifted peak	


+ nonlinear	

index shift	




A Linear Nonlinear “Transistor”	


Linear response:	

Lorenzian Transmisson	
 shifted peak	


+ feedback	


Bistable (hysteresis) response	

Power threshold ~ V/Q2 is near optimal	

(~mW for Si and telecom bandwidth)	


semi-analytical	


numerical	


Logic gates, switching,	

rectifiers, amplifiers,	


isolators, …	


[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]	




TCMT for Bistability	

[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]	


a	
input	
 output	
s1+	
 s2–	

resonant cavity	


frequency ω0, lifetime τ, 	

SPM coefficient α  ~ χ(3)

	

(computed from perturbation theory) 	


	


|s|2 = power	

|a|2 = energy	


da
dt

= −i(ω0 −α a 2 )a − 2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

gives cubic equation	

for transmission	


	
… bistable curve	




Experimental Nonlinear Switches	


420 nm	


[ Notomi et al. (2005). ]	

[ Xu & Lipson, 2005 ]	


Q ~ 30,000	

V ~ 10 optimum	


Power threshold ~ 40 µW	


10µm	


Q ~ 10,000	

V ~ 300 optimum	


Power threshold ~ 10 mW	




Experimental Bistable Switch	


Silicon-on-insulator	


420 nm	


Q ~ 30,000	

Power threshold ~ 40 µW	

Switching energy ~ 4 pJ	


[ Notomi et al., Opt. Express 13 (7), 2678 (2005). ]	




Same principles apply in 3d…	


rod layer

hole layer

(fcc crystal)	


A	


B	


C	




2d-like defects in 3d	


modify single layer
of holes or rods

[ M. L. Povinelli et al., Phys. Rev. B 64, 075313 (2001) ]	




3d projected band diagram	


wavevector  kx ( 2π/a)
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2d-like waveguide mode	


y

-1 1
Ez y

z

y

-1 1
Ez

x x

3D Photonic Crystal 2D Photonic Crystal



2d-like cavity mode	




The Upshot	


To design an interesting device, you need only:	


symmetry	


+ resonance	


+ (ideally) a band gap to forbid losses	


+ single-mode (usually)	


Oh, and a full Maxwell simulator to get Q parameters, etcetera.	
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Review: Bloch Basics	

a	


Waves in periodic media can have:	

• propagation with no scattering (conserved k)	

• photonic band gaps (with proper ε function)	


Eigenproblem gives simple insight:	


 
(

∇ + i


k ) × 1

ε
(

∇ + i


k ) ×⎡

⎣⎢
⎤
⎦⎥

H k =

ωn (

k )
c

⎛
⎝⎜

⎞
⎠⎟

2 
H k

 Θ̂

k Hermitian –> complete, orthogonal, variational theorem, etc.	


ω	


k	


 

H = ei(


k ⋅ x−ω t ) H k (

x)Bloch form:	


band diagram	




Review: Defects and Devices	

Waveguides	


+	

Resonant	

Cavities	


Point defects = Cavities	


Line defects = Waveguides	




Review: 3d Crystals and Fabrication	


10µm	


Much progress	

in making complex structures	


…	

incorporation of defects & devices	


still in early stages	




How else can we confine light?	




Total Internal Reflection	


ni > no	


no	


rays at shallow angles > θc	

are totally reflected	


Snell’s Law:	


θi	

θo	


ni sinθi = no sinθo	


sinθc = no / ni	


< 1, so θc is real 	


i.e. TIR can only guide	

within higher index	

unlike a band gap	




Total Internal Reflection?	


ni > no	


no	


rays at shallow angles > θc	

are totally reflected	


So, for example,	

a discontiguous structure can’t possibly guide by TIR…	


the rays can’t stay inside!	




Total Internal Reflection?	


ni > no	


no	


rays at shallow angles > θc	

are totally reflected	


So, for example,	

a discontiguous structure can’t possibly guide by TIR…	


or can it?	




Total Internal Reflection Redux	


ni > no	


no	


ray-optics picture is invalid on λ scale 	

(neglects coherence, near field…)	


Snell’s Law is really	

conservation of k|| and ω:	


θi	

θo	


|ki| sinθi = |ko| sinθo	


|k| = nω/c	

(wavevector)	
 (frequency)	


k||	


translational	

symmetry	


conserved!	




Waveguide Dispersion Relations ���
i.e. projected band diagrams	


ni > no	


no	


k||	


ω	
 light cone	

projection of all k⊥ in no	


(a.k.a. β)	


ω = ck / ni	


higher-index core	

pulls down state	


(      ∞)	


higher-order modes	

at larger ω, β	


weakly guided (field mostly in no)	


� 

ω = c
no

β 2 + k⊥
2



Strange Total Internal Reflection	

Index Guiding	


a	




A Hybrid Photonic Crystal:���
1d band gap + index guiding	


a	


range of frequencies	

in which there are	


no guided modes	


slow-light band edge	




A Resonant Cavity	


increased rod radius	

pulls down “dipole” mode	


(non-degenerate)	


–  +	




ω	


A Resonant Cavity	


–  +	


k not conserved	

so coupling to	


light cone:	

radiation	


The trick is to	

keep the	


radiation small…	

(more on this later)	




Meanwhile, back in reality…	


5 µm	


[ D. J. Ripin et al., J. Appl. Phys. 87, 1578 (2000) ] 	


d = 703nm	
d = 632nm	
d	


Air-bridge Resonator: 1d gap + 2d index guiding	


bigger cavity	

= longer l	




Time for Two Dimensions…	

2d is all we really need for many interesting devices	


…darn z direction!	




How do we make a 2d bandgap?	


Most obvious 
solution?	


	


make	

2d pattern 
really tall	




How do we make a 2d bandgap?	


If height is finite,	

we must couple to	


out-of-plane wavevectors…	


kz not conserved	




A 2d band diagram in 3d?	


E	


H	

TM	


a	


Fr
eq

ue
nc

y 
ω

  (
2π

c/
a)

  =
 a

 / 
λ	


Γ	
 X	
 M	
 Γ	


Recall the 2d band diagram:	

… what happens in 3d?	


& what about polarization?	




A 2d band diagram in 3d	


E	


H	

TM	


a	


Fr
eq

ue
nc

y 
ω

  (
2π

c/
a)

  =
 a

 / 
λ	


Γ	
 X	
 M	
 Γ	


In 3d, continuum of kz	

fills upwards from 1st band:	


& pure polarizations disappear	


no gap remains!	


…but interesting	

“space” down here…	




Photonic-Crystal Slabs	


2d photonic bandgap + vertical index guiding	


[ J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade,	

Photonic Crystals: Molding the Flow of Light, 2nd edition, chapter 8]	




Rod-Slab Projected Band Diagram	

Light cone = all 
solutions in medium 
above/below slab	

	

Guided modes below	

light cone = no radiation	

	

Two “polarizations:”	

TM-like & TE-like	

	

“Gap” in guided modes	

… not a complete gap	

	

Slab thickness is crucial 
to obtain gap…	




Slab symmetry & “polarization”	

2d: TM and TE modes	


slab: odd (TM-like) and even (TE-like) modes	


mirror plane	

z = 0	


Like in 2d, there may only be a band gap	

in one symmetry/polarization	


E	
 E	




Slab Gaps	


TM-like gap	
 TE-like gap	


Rod slab	
 Hole slab	




Substrates, for the Gravity-Impaired	

(rods or holes)	


substrate breaks symmetry:	

some even/odd mixing “kills” gap	


BUT	

with strong confinement	


(high index contrast)	

mixing can be weak	


superstrate restores symmetry	


“extruded” substrate	

= stronger confinement	


(less mixing even	

without superstrate	




Extruded Rod Substrate	


(GaAs on AlOx)	

[ S. Assefa et al., APL 85, 6110 (2004). ]	




Air-membrane Slabs	


[ N. Carlsson et al., Opt. Quantum Elec. 34, 123 (2002) ]	


who needs a substrate?	


2µm	


AlGaAs	




Holes (TE-like) Rods (TM-like)

Sla b Thickness (a)

30

25

20

15

10

5

0
0.5 1.5 2.50 1 2 3

Optimal Slab Thickness	

~ λ/2, but λ/2 in what material?	


TM “sees” <ε-1>-1	


~ low ε	

TE “sees” <ε>	


~ high ε	


effective medium theory: effective ε depends on polarization	


[ Johnson et al. (1999) ]	




Photonic-Crystal Building Blocks	

point defects	


(cavities)	

line defects	

(waveguides)	




A Reduced-Index Waveguide	


Reduce the radius of a row of	

rods to “trap” a waveguide mode	

in the gap.	


(r=0.2a)	


(r=0.18a)	


(r=0.16a)	


(r=0.12a)	


(r=0.14a)	


Still have conserved	

wavevector—under the	

light cone, no radiation	


(r=0.10a)	


We cannot completely	

remove the rods—no	

vertical confinement!	




Reduced-Index Waveguide Modes	




Experimental Waveguide & Bend	

[ E. Chow et al., Opt. Lett. 26, 286 (2001) ]	


1µm	
 1µm	


GaAs	

AlO	


SiO2	


be
nd

in
g 

ef
fic

ie
nc

y	


caution:	

can easily be	

multi-mode	




Inevitable Radiation Losses ���
whenever translational symmetry is broken	


e.g. at cavities, waveguide bends, disorder…	


k is no longer conserved!	


w	

(conserved)	


coupling to light cone	

= radiation losses	




Dimensionless Losses: Q	


1	


w0	


T = Lorentzian filter	


=

4
τ 2

ω −ω0( )2 + 4
τ 2

w	


FWHM	

1
Q
=
2

ω0τ

…quality factor Q	


quality factor Q = # optical periods for energy to decay by exp(–2π)	


energy ~ exp(–ωt/Q)	


in frequency domain: 1/Q = bandwidth	


from last time:	

(coupling-of-	


        modes-in-time)	




All Is Not Lost	


Qw

A simple model device (filters, bends, …):	

Qr

Q
1

Qr
1

Qw
1= +

Q = lifetime/period	

    = frequency/bandwidth	


We want: Qr >> Qw	


1 – transmission ~ 2Q / Qr	


worst case: high-Q (narrow-band) cavities	




Radiation loss: A Fourier picture	


spatial:	

	

	

	


Fourier:	


infinitely	

extended	

in space	


k	

delta function(s) [Fourier series]	

below light cone = no radiation	


localized	

in space	


k	

delocalized in Fourier	


tails in light cone = radiation	




A tradeoff: Localization vs. Loss	


stronger spatial localization	
 weaker spatial localization	


“Uncertainty principle:”	

less spatial localization = more Fourier localization	


= less radiation loss	




(ε = 12)	


Monopole Cavity in a Slab	


decreasing ε	


Lower the ε of a single rod: push up	

a monopole (singlet) state.	


Use small Δε: delocalized in-plane,	

	
 	
   & high-Q (we hope)	


(cross-section)	




Delocalized Monopole Q	


ε=6	


ε=7	


ε=8	


ε=9	


ε=10	


ε=11	


mid-gap	


[ S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001). ]	




Super-defects	


Weaker defect with more unit cells.	

	


More delocalized	

at the same point in the gap	


(i.e. at same bulk decay rate)	




Super-Defect vs. Single-Defect Q	


ε=6	


ε=7	


ε=8	


ε=9	


ε=10	


ε=11	


ε=7	


ε=8	


ε=9	


ε=10	


ε=11	


ε=11.5	


mid-gap	


[ S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001). ]	




Super-Defect State���
(cross-section)	

Δε = –3, Qrad = 13,000	


(super defect)	


still ~localized: In-plane Q|| is > 50,000 for only 4 bulk periods	


Ez	




How do we compute Q?	


1	
 excite cavity with dipole source	

(broad bandwidth, e.g. Gaussian pulse)	


… monitor field at some point	


(via 3d FDTD [finite-difference time-domain] simulation)	


…extract frequencies, decay rates via	

fancy signal processing (not just FFT/fit)	


[ V. A. Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]	


Pro: no a priori knowledge, get all ω’s and Q’s at once	


Con: no separate Qw/Qr, 	

              mixed-up field pattern if multiple resonances	




How do we compute Q?	


2	
 excite cavity with	

narrow-band dipole source	


(e.g. temporally broad Gaussian pulse)	


(via 3d FDTD [finite-difference time-domain] simulation)	


— source is at ω0 resonance,	

which must already be known (via       )	
1	


…measure outgoing power P and energy U	


Q = ω0 U / P	


Pro: separate Qw/Qr, also get field pattern when multimode	


Con: requires separate run        to get ω0,	

                long-time source for closely-spaced resonances	


1	




Can we increase Q ���
without delocalizing (much)?	




Cancellations?	


Maybe we can make the Fourier transform oscillate 
through zero at some important k in the light cone?	


	

But what k’s are “important?”	


	

Equivalently, some kind of destructive interference	


in the radiated field?	




Need a more���
compact representation	




Multipole Expansion	

[ Jackson, Classical Electrodynamics ]	


radiated field =	


dipole	
 quadrupole	
 hexapole	


Each term’s strength = single integral over near field	

…one term is cancellable by tuning one defect parameter	




Multipole Expansion	

[ Jackson, Classical Electrodynamics ]	


radiated field =	


dipole	
 quadrupole	
 hexapole	


peak Q (cancellation) = transition to higher-order radiation	




Multipoles in a 2d example	


increased rod radius	

pulls down “dipole” mode	


(non-degenerate)	


–  +	


as we change the radius, ω sweeps across the gap	




2d multipole���
cancellation	


Q
 =

 1
,7

73
	


Q
 =

 6
,6

24
	


Q
 =

 2
8,

70
0	




An Experimental (Laser) Cavity	

[ M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002) ]	
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Elongation p is a tuning parameter for the cavity…	


cavity	


…in simulations, Q peaks sharply to ~10000 for p = 0.1a	

(likely to be a multipole-cancellation effect)	


* actually, there are two cavity modes; p breaks degeneracy	




An Experimental (Laser) Cavity	

[ M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002) ]	


el
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Elongation p is a tuning parameter for the cavity…	


cavity	


…in simulations, Q peaks sharply to ~10000 for p = 0.1a	

(likely to be a multipole-cancellation effect)	


* actually, there are two cavity modes; p breaks degeneracy	


Hz (greyscale)	




An Experimental (Laser) Cavity	

[ M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002) ]	


cavity	


quantum-well lasing threshold of 214µW	

(optically pumped @830nm, 1% duty cycle) 	


(InGaAsP)	


Q ~ 2000 observed from luminescence	




Multipole Cancellation in Stretched Cavity	

p = 0.1a p = 0.205a p = 0.3a

0 ma x
z flux

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Q	


frequency (c/a)	


stretch p/a	


[ calculations courtesy A. Rodriguez, 2006 ]	




Slab Cavities in Practice: Q vs. V	

 [ Loncar, APL 81, 2680 (2002) ]	


Q ~ 10,000   (V ~ 4 × optimum) 	

                                    = (λ/2n)3	


 [ Akahane, Nature 425, 944 (2003) ]	


Q ~ 45,000  (V ~ 6 × optimum)	


Q ~ 106  (V ~ 11 × optimum)	


[ Ryu, Opt. Lett. 28, 2390 (2003) ]	


Q ~ 600,000  (V ~ 10 × optimum)	


 [ Song, Nature Mat.	

 4, 207 (2005) ]	


(theory	

only)	
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protective	

polymer	

sheath	


Optical Fibers Today���
(not to scale)	


silica cladding	

n ~ 1.45	


more complex profiles	

to tune dispersion	


“high” index	

doped-silica core	


n ~ 1.46	


“LP01”	

confined mode	


field diameter ~ 8µm	


losses ~ 0.2 dB/km	

at λ=1.55µm	


(amplifiers every	

50–100km)	


but this is	

~ as good as	


it gets…	

[ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ]	




The Glass Ceiling: Limits of Silica	


Long Distances	

High Bit-Rates	


Dense Wavelength Multiplexing (DWDM)	


Loss: amplifiers every 50–100km	

…limited by Rayleigh scattering (molecular entropy)	


…cannot use “exotic” wavelengths like 10.6µm	


Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits	

(limited by mode area ~ single-mode, bending loss)	


also cannot be made (very) large for compact nonlinear devices	


Compact Devices	


Radical modifications to dispersion, polarization effects?	

…tunability is limited by low index contrast	




Breaking the Glass Ceiling: ���
Hollow-core Bandgap Fibers	


1000x better	

loss/nonlinear limits	


(from density)	


Photonic Crystal	


1d	

crystal	


Bragg fiber	

[ Yeh et al., 1978 ]	


+ omnidirectional	

= OmniGuides	


2d	

crystal	


PCF	

[ Knight et al., 1998 ]	
(You can also	


put stuff in here …)	




Breaking the Glass Ceiling: ���
Hollow-core Bandgap Fibers	


Bragg fiber	

[ Yeh et al., 1978 ]	


+ omnidirectional	

= OmniGuide	


 fibers	


PCF	

[ Knight et al., 1998 ]	


white/grey	

= chalco/polymer	


5µm	
[ R. F. Cregan 	

et al., 	


Science 285, 	

1537 (1999) ]	


[ figs courtesy 	

Y. Fink et al., MIT ]	


silica	




Breaking the Glass Ceiling II: ���
Solid-core Holey Fibers	


solid core	


holey cladding forms	

effective	


low-index material	


[ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) ]	


Can have much higher contrast	

than doped silica…	


strong confinement = enhanced	

nonlinearities, birefringence, …	




Sequence of Analysis	


1	
 Plot all solutions of infinite cladding as ω vs. β   (= kz)	

ω	


β	


empty spaces (gaps): guiding possibilities	


2	
 Core introduces new states in empty spaces	

	
— plot ω(β) dispersion relation	


3	
 Compute other stuff…	


“light cone”	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.1a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.17717a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.22973a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.30912a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.34197a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.37193a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.4a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.42557a	

ω

 (2
πc

/a
)	


light cone	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.45a	

ω

 (2
πc

/a
)	


light cone	


index-guided modes	

go here	


gap-guided modes	

go here	




PCF: Holey Silica Cladding	
 2r	


a	


n=1.46	


β (2π/a)	


r = 0.45a	

ω

 (2
πc

/a
)	


light cone	
 above air line:	

guiding in air core	


is possible	


below air line: surface states of air core	

[ figs: West et al, 	


Opt. Express 12 (8), 1485 (2004) ]	




Experimental Air-guiding PCF	

Fabrication (e.g.)	


silica glass tube (cm’s)	


fiber	

draw	


~1 mm	


(outer	

cladding)	


fuse &	

draw	


~50 µm	




Experimental Air-guiding PCF	

[ R. F. Cregan et al., Science 285, 1537 (1999) ]	


10µm	


5µm	




Experimental Air-guiding PCF	

[ R. F. Cregan et al., Science 285, 1537 (1999) ]	


w (c/a) (not 2πc/a)	


transmitted intensity	

after ~ 3cm	




A more recent (lower-loss) example	


3.9µm	


hollow (air) core (covers 19 holes)	


guided field profile:	

(flux density)	


[Mangan, et al., OFC 2004 PDP24 ]	


1.7dB/km	

BlazePhotonics	


over ~ 800m @1.57µm	




Improving air-guiding losses 	


13dB/km	

Corning	


over ~ 100m @1.5µm	

[ Smith, et al., Nature 424, 657 (2003) ]	


1.7dB/km	

BlazePhotonics	


over ~ 800m @1.57µm	

[ Mangan, et al., OFC 2004 PDP24 ]	


larger core =	

less field penetrates	


cladding	


ergo,	

roughness etc.	


produce lower loss	




State-of-the-art air-guiding losses	

larger core = more surface states crossing guided mode	


	


100nm	

20nm	


13dB/km	

Corning	


over ~ 100m @1.5µm	

[ Smith, et al., Nature 424, 657 (2003) ]	


1.7dB/km	

BlazePhotonics	


over ~ 800m @1.57µm	

[ Mangan, et al., OFC 2004 PDP24 ]	


… but surface states can be removed by proper crystal termination	

[ West, Opt. Express 12 (8), 1485 (2004) ]	




Surface States vs. Termination	

1.9

2

1.8

1.7

1.5

Wave vector kza/2π
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

photonic crysta l light cone

1.6

1.4

changing the crystal termination	

can eliminate surface states	


[ West, Opt. Express 12 (8), 1485 (2004) ]	


[ Saitoh, Opt. Express 12 (3), 394 (2004) ]	


[ Kim, Opt. Express 12 (15), 3436 (2004) ]	




Bragg Fiber Cladding	

at large radius,	


becomes ~ planar	

Bragg fiber gaps (1d eigenproblem)	


wavenumber β	


β	


radial kr	

(Bloch wavevector)	


β = 0: normal incidence	

kφ	


0 by conservation	

of angular momentum	


ω	




Omnidirectional Cladding	

Bragg fiber gaps (1d eigenproblem)	


wavenumber β	

β	
 β = 0: normal incidence	


omnidirectional	

(planar) reflection	


for nhi / nlo	

big enough	

and nlo > 1	


e.g. light from	

fluorescent sources	


is trapped	


[ J. N. Winn et al,	

Opt. Lett. 23, 1573 (1998) ]	


w	




Hollow Metal Waveguides, Reborn	

OmniGuide fiber modes	


wavenumber β	
wavenumber β	


fre
qu

en
cy

 ω
	


metal waveguide modes	


1970’s microwave tubes	

@ Bell Labs	


modes are directly analogous to those in hollow metal waveguide 



An Old Friend: the TE01 mode	

lowest-loss mode,	


just as in metal	



E

(near) node at interface	

= strong confinement	


= low losses	


non-degenerate mode	

— cannot be split	


= no birefringence or PMD	




Yes, but how do you make it?	

[ figs courtesy Y. Fink et al., MIT ]	


find compatible materials	

(many new possibilities)	


chalcogenide glass, n ~ 2.8	

+ polymer (or oxide), n ~ 1.5	


1	


Make pre-form	

(“scale model”)	


2	


fiber drawing	


3	




A Drawn Bandgap Fiber	

•  Photonic crystal structural 

uniformity, adhesion, 
physical durability through 
large temperature excursions 

white/grey	

= chalco/polymer	


[ figs courtesy Y. Fink et al., MIT ]	




High-Power Transmission���
at 10.6µm (no previous dielectric waveguide)	


[ figs courtesy Y. Fink et al., MIT ]	
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Polymer losses @10.6µm ~ 50,000dB/m…	

…waveguide losses < 1dB/m	


[ B. Temelkuran et al.,	

Nature 420, 650 (2002) ]	
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Application: Laser Surgery	


[ www.omni-guide.com]	




Index-Guiding PCF & microstructured fiber: ���
Holey Fibers	


solid core	


holey cladding forms	

effective	


low-index material	


[ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) ]	


Can have much higher contrast	

than doped silica…	


strong confinement = enhanced	

nonlinearities, birefringence, …	




Guided Mode in a Solid Core	

small computation: only lowest-w band!	


2r	


a	


n=1.45	


r = 0.3a	


power density	


(~ one minute, planewave)	




λ-dependent “index contrast”	


2r	


a	


n=1.45	


r = 0.3a	




Endlessly Single-Mode	

[ T. A. Birks et al., Opt. Lett. 22, 961 (1997) ]	


at higher ω	

(smaller λ),	


the light is more	

concentrated in silica	


http://www.bath.ac.uk/physics/groups/opto!

…so the effective	

index contrast is less	


…and the fiber can stay	

single mode for all λ!	




Holey Fiber PMF ���
(Polarization-Maintaining Fiber)	


no longer degenerate with	


Can operate in a single polarization, PMD = 0	

(also, known polarization at output)	


[ K. Suzuki, Opt. Express 9, 676 (2001) ]	


birefringence B = Dbc/w	

= 0.0014	


(10 times B of silica PMF)	


Loss = 1.3 dB/km @ 1.55µm	

over 1.5km	




Truly Single-Mode Cutoff-Free Fiber	


β (2π/a)	


ω
 c - 

 ω
 (2
πc

/a
)	


ω > ωc: not guided	


single-mode	


1st mode:	

no cutoff	


2nd mode	

cutoff	


[ Lee et. al., Optics Express 16, 15170-15184 (2008) ]	




Nonlinear Holey Fibers:	


[ figs: W. J. Wadsworth et al., J. Opt. Soc. Am. B 19, 2148 (2002) ]	


Supercontinuum Generation	


e.g. 400–1600nm “white” light:	

from 850nm ~200 fs pulses (4 nJ)	


(enhanced by strong confinement + unusual dispersion)	


[ earlier work: J. K. Ranka et al., Opt. Lett. 25, 25 (2000) ]	




Low Contrast Holey Fibers	


The holes can also form an	

effective low-contrast medium	


i.e. light is only affected slightly	

by small, widely-spaced holes	


This yields	

large-area, single-mode	

fibers (low nonlinearities)	


	

…but bending loss is worse	


[ J. C. Knight et al., Elec. Lett. 34, 1347 (1998) ]	


~ 10 times standard fiber mode diameter	




Outline	


•  Preliminaries: waves in periodic media	

•  Photonic crystals in theory and practice	

•  Bulk crystal properties	

•  Intentional defects and devices	

•  Index-guiding and incomplete gaps	

•  Photonic-crystal fibers	

•  Perturbations, tuning, and disorder	




All Imperfections are Small	


• Material absorption: small imaginary Δε	


• Nonlinearity: small Δε ~ |E|2  (Kerr)	


• Stress (MEMS): small Δε or small ε boundary shift	


• Tuning by thermal, electro-optic, etc.: small Δε	


• Roughness: small Δε or boundary shift 	


(or the device wouldn’t work)	


Weak effects, long distance/time: hard to compute directly	

— use semi-analytical methods	




Semi-analytical methods ���
for small perturbations	


• Brute force methods (FDTD, etc.):	

	
expensive and give limited insight	


• Semi-analytical methods	

	
— numerical solutions for perfect system	

	
      + analytically bootstrap to imperfections	


… coupling-of-modes, perturbation theory, 	

	
Green’s functions, coupled-wave theory, …	




Perturbation Theory���
for Hermitian eigenproblems	


given eigenvectors/values:	
 ˆ O u = u u
…find change          &            for small	
Δu Δ u Δ ˆ O 

Solution:	

expand as power series in	
Δ ˆ O 

Δu = 0 + Δu(1) + Δu(2 ) +…
Δ u = 0 + Δ u (1) +…&	


Δu(1) = u Δ ˆ O u
u u (first order is usually enough)	




Perturbation Theory���
for electromagnetism	


Δω (1) = c2

2ω
H Δ ˆ A H
H H

= −ω
2

ΔεE 2∫
εE 2∫

� 

Δk (1) = Δω(1) /vg

� 

vg = dω
dk

…e.g. absorption	

gives imaginary Dw	


= decay!	


� 

⇒ Δω(1)

ω
= − Δn

n
⋅ (fraction of ε E 2  in Δn)

or:	




A Quantitative Example	


Gas can have	

low loss	


& nonlinearity	


…but what about	

the cladding?	


& may need to use	

very “bad” material	


to get high index contrast	


…some field	

penetrates!	




Review: the TE01 mode	

lowest-loss mode,	


just as in metal	
  

E

(near) node at interface	

= strong confinement	


= low losses	


[ Johnson, Opt. Express 9, 748 (2001) ]	




Suppressing Cladding Losses	


EH11	


TE01	


Mode Losses	

÷	


Bulk Cladding Losses	


TE01 strongly suppresses	

cladding absorption	


	

(like ohmic loss, for metal)	


Large differential loss	


l (mm)	
[ Johnson, Opt. Express 9, 748 (2001) ]	




Quantifying Nonlinearity	


Δβ ~ power P ~ 1 / lengthscale for nonlinear effects	


γ = Δβ / P	

	


= nonlinear-strength parameter determining	

self-phase modulation (SPM), four-wave mixing (FWM), …	


(unlike “effective area,”	

tells where the field is, 	


not just how big)	


[ Johnson, Opt. Express 9, 748 (2001) ]	
 [ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ]	




Suppressing Cladding Nonlinearity	


TE01	


Mode Nonlinearity*	

÷	


Cladding Nonlinearity	


l (mm)	


Will be dominated by	

nonlinearity of air	


	

~10,000 times weaker	


than in silica fiber	

(including factor of 10 in area)	


* “nonlinearity” = Δβ(1) / P = β	


[ Johnson, Opt. Express 9, 748 (2001) ]	




A Linear Nonlinear “Transistor”	


Linear response:	

Lorenzian Transmisson	


Bistable (hysteresis) response	


semi-analytical	


numerical	


Entire nonlinear response	

from one linear calculation:	


	

Lorentzian mode w, Q	


+	

Kerr Δω ~ |E|2	


(to first order)	


[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]	




Tuning Microcavities	

• Correcting for fabrication error:	


	
— narrow-band filters require 10–3 or better accuracy	

	
⇒ fabricate “close enough” and tune post-fabrication	

	
 	
… want: large tunability, slow speeds	


• Switching/routing:	

	
— require small tunability (e.g. by bandwidth: 10–3)	

	
— need high speeds (ideally, ns or better)	


Many mechanisms to change cavity index or shape:	

	
liquid crystal, thermal,	

	
nonlinearities, carrier density, MEMS…	


� 

Δω (1)

ω
= −Δn

n
⋅ (fraction of εE 2  in Δn)“easy” theory for ∆n tuning:	




Liquid-crystal Tuning	

One of the earliest proposals:	
 [ Busch & John, PRL 83, 967 (1999). ]	


Asymmetric particles oriented by external field:	

    — n on (two) “ordinary” axes can differ	

         from “extraordinary-axis” n by ∆n ~15%	


Difficulty: filling entire photonic crystal 	

	
with liquid (n ~ 1.5) usually destroys the gap 	


Response time: 20–200µs [ Shimoda, APL 79, 3627 (2001). ]	


Possible solutions:	

	
• use thin LC coating [Busch, 1999], but small ∆frequency	

	
• use micro-fluidic droplet only in cavity? 	




Thermal tuning	

using thermal expansion, phase transitions,	


or most successfully, thermo-optic coefficient (dn/dT)	

[ Chong, PTL 16, 1528 (2004). ]	


5 nm tuning (0.3%) in Si	

time (estimated) < 1 ms	


[ Asano, Elec. Lett. 41 (1) (2005). ]	


5 nm tuning	

(0.3%)	


time ~ 20µs	




Tuning by Free-carrier Injection	

[ Leonard, PRB 66, 161102 (2002). ]	


macroporous Si	


Measured ∆reflectivity from	

band-edge shift at 1.9µm	


optical carrier injection	

by 300fs pulses	


at 800nm pump wavelength	


31 nm wavelength shift (2%)	

rise time ~ 500 fs	


but affects absorption too	




Tuning by Optical Nonlinearities	

Pockels effect (∆n ~ E)	
 Kerr effect (∆n ~ |E|2)	


[ Hu, APL 83, 2518 (2003). ]	


fcc lattice of polystyrene spheres	

(incomplete gap)	


13nm shift @ 540nm (2.4%)	

response time ~ 10 ps	


[ Takeda, PRE 69, 016605 (2004). ]	


Theory only	




Tuning by MEMS deformation	


stretch piezo-electrically	

(MEMS)	


[ C.-W. Wong, Appl. Phys. Lett. 84, 1242 (2004). ]	


1.5 nm shift @ 1.5µm (0.1%)	

response-time not measured, expected in “microseconds” range	


Theory tricky: not a ∆n shift	




Boundary-perturbation theory	


ε1	


ε2	

Δε = ε1 – ε2	


Δε = ε2 – ε1	


… just plug Δε into	

perturbation formulas?	


FAILS for high index contrast!	

beware field discontinuity…	


fortunately, a simple correction exists	
 [ S. G. Johnson et al.,	

PRE 65, 066611 (2002) ]	




Boundary-perturbation theory	


ε1	


ε2	

Δε = ε1 – ε2	


Δε = ε2 – ε1	


[ S. G. Johnson et al.,	

PRE 65, 066611 (2002) ]	


Δω (1) = −ω
2

Δh ΔεE||
2 − Δ 1

ε
D⊥

2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

surf.
∫

εE 2∫

Δh	

(continuous field components)	




Surface roughness disorder?	

disordered	


photonic crystal	
conventional	

ring resonator	


loss limited by disorder	

(in addition to bending)	


[ S. Fan et. al., J. Appl. Phys. 78, 1415 (1995). ]	


small (bounded) disorder does not destroy the bandgap	

[ A. Rodriguez et. al., Opt. Lett. 30, 3192 (2005). ]	


Q limited only by crystal size (for a 3d complete gap) …	


[ A. Rodriguez, MIT ]	


[ http://www.physik.uni-wuerzburg.de/TEP/Website/groups/opto/etching.htm ]

… but waveguides have more trouble …	




Effect of Gap on Disorder 
(e.g. Roughness) Loss?	


index-guided waveguide 

radiation blocked 
increased reflection 

radiation blocked 
no increase in reflection 

photonic-crystal waveguide: which picture is correct? 

OR 

[ with M. Povinelli ]	




Coupled-mode theory	

Expand state in ideal eigenmodes, for constant w:	


ψ = cn (z) n eiβnz
n
∑

expansion	

coefficient	
 eigenstate of perfect waveguide	


wavenumber	


state (field)	

of disordered	

waveguide	
 z	




What’s New in Coupled-Mode Theory?	


• Traditional methods (Marcuse, 1970): weak periodicity only	


— de Sterke et al. (1996): coupling in time (nonlinearities)	


— Russell (1986): weak perturbations, slowly varying only	


2002+: exact extension, for z-dependent (constant ω), and:	

	
arbitrary periodicity, 	

	
arbitrary index contrast (full vector),	

	
arbitrary disorder [ and/or tapers ]	


• Strong perodicity (Bloch modes expansion):	


full-vector	

scalar	


[ M. L. Povinelli et al., APL 84, 3639 (2004). ]	

[ S. G. Johnson et al., PRE 66, 066608 (2002). ]	
 [ M. Skorobogatiy et al., 	


Opt. Express 10, 1227 (2002). ]	




Coupled-wave Theory���
(skipping all the math…)	


dcn
dz

= coupling[ ]m ,n eiΔβ z cm
m≠n
∑

Depends only on:	

	
• strength of disorder	

	
• mode field at disorder	

	
• group velocities	


Weak disorder, short correlations: refl. ~ |coupling|2	

if disorder and modes are “same,”	


then reflection is the same	


mode	

expansion	


coefficients	

[ M. L. Povinelli et al., APL 84, 3639 (2004). ]	




A Test Case	


strip waveguide PC waveguide 

w 

a 
index-guided	
 gap-guided, same ω(β)	


[ M. L. Povinelli et al., APL 84, 3639 (2004). ]	


A controlled comparison: gap is the only difference.	




A Test Case	


pixels added/removed with probability p	


same disorder in both cases, averaged over many FDTD runs	




Test Case Results: Reflection	


disorder strength p	


re
fle

ct
ed

 p
ow

er
	


same reflection	

for weak disorder	




Test Case Results: Total Loss	


disorder strength p	


lo
ss

 =
 1

 –
 tr

an
sm

iss
io

n	


crystal has ~40%	

lower loss rate	




photonic bandgap���
(all other things equal)���

= unambiguous improvement	


But, the news isn’t all good…	




Group-velocity (v) dependence���
other things being equal	


absorption/radiation-scattering loss	

	
 	
 	
 	
(per distance)  ~ 1/v	


reflection loss	

	
(per distance)  ~ 1/v2	


(per time)  ~ 1/v	


Losses a challenge for slow light…	


[ S. G. Johnson et al., Proc. 2003 Europ. Symp. Phot. Cryst. 1, 103. ]	

[ S. Hughes et al., Phys. Rev. Lett. 94, 033903 (2005). ]	




An Easier Way to Compute Loss	


imperfection acts like a volume current	


 

J ~ Δε


E0

volume-current method	

(i.e., first Born approx. to Green’s function)	


	




An Easier Way to Compute Loss	


uncorrelated disorder adds incoherently	


So, compute power P radiated by one localized source J,	

and loss rate ~ P * (mean disorder strength)	




Losses from Point Scatterers	

strip	


Refl.	


Radiation	


photonic crystal	


same	

Refl.	


Radiation	


Loss rate ratio = (Refl. only) / (Refl. + Radiation) = 60%	
ü	




Conventional waveguide 

 

radiation	


re
fle

ct
io

n	

Effect of an Incomplete Gap	


…with Si/SiO2 Bragg mirrors (1D gap) 
50% lower losses (in dB) 

same reflection 

some radiation blocked	


sa
m

e 
re

fle
ct

io
n	


(matching modal area) 

on uncorrelated surface roughness	




Failure of the Volume-current Method	


imperfection acts like a volume current	


 

J ~ Δε


E0

Incorrect for large Δε (except in 2d TM polarization)	


E0	
 Δε “bump” changes E	

(E⊥ is discontinuous)	




Scattering Theory (for small scatterers)	


incident wave E0 (λ >> d)	

(scattered wave)	


+	
+	
+	
 +	
+	


–	
–	

–	
 –	
 –	
=	


dipole p = a E0	


sphere: effective point current J  ~  p / ΔV 	

                                                              = 3 Δε E0 / (Δε + 3)	


= Δε E0 for small Δε, but very different for large Δε	


(quasi-static)	


[ e.g. Jackson, Classical Electrodynamics ]	




Corrected Volume Current for Large De	


=	

dipole p = α E|| + γ D⊥	


unperturbed field E	


+	
+	
+	


–	
–	

–	


ε2	
 ε1	


effective point current J  ~  (         p|| + εp⊥) / ΔV	
ε1 + ε2	

2	


(compute polarizability	

numerically)	


[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	




Strip Waveguides ���
in Photonic-Crystal Slabs (3d)	


How does incomplete 3d gap affect roughness loss?	


[ Johnson et al., PRB 62, 8212 (2000) ]	
 [ Lau et al., APL 81, 3915 (2002) ]	


[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	




Rods: Surface-corrugation	

vertical “ridge”	


= line source	


frequency a / λ	


Lo
ss

 W
ith

 C
ry

sta
l /

 W
ith

ou
t C

ry
sta

l	


radiation only	


reflection only	


total loss	


[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	




Holes: Surface-corrugation	

vertical “ridge”	


= line source	


frequency a / λ	


Lo
ss

 W
ith

 C
ry

sta
l /

 W
ith

ou
t C

ry
sta

l	


radiation only	


reflection only	


total loss	


[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	




Rods vs. Holes? Answer is in 2d.	


The hole waveguide is not single mode	

	
— crystal introduces new modes (in 2d)	

	
        and new leaky modes (in 3d)	


[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	




Controlled Deviations: Tapers	

[ Johnson et al., PRE 66, 066608 (2002) ]	


• An adiabatic theorem for periodic systems:	


	
slow transitions = 100% transmission	

    — with simple conditions = design criteria	


In doing so, we got something more:	

	
a new coupled-mode theory for periodic systems	

	
 	
= efficient modeling +	

	
 	
 	
results for other problems	




A simple problem?	

to	
 to	




A simple problem?	

L = 10a: L	
 L	


L (a)	


tra
ns

m
iss

io
n	


taper is	

worse!!	




What happened���
to the adiabatic theorem?	


[ Johnson et al., PRE 66, 066608 (2002) ]	




At all intermediate taper points, the operating mode:	


Must be propagating (not in the band gap).	


Must be guided (not part of a continuum).	


Intuitive!	


Easy to violate accidentally in photonic crystals.	


There is an adiabatic theorem!���
…but with two conditions	




fre
qu

en
cy

 (c
/a

)	


taper position	


in-gap!	


tapering the width	


band gap	


A Problematic Taper	




ga
p 

fre
qu

en
cy

 (c
/a

)	


taper position	


in-gap!	


tapering the period	


band gap	


Corrected Taper: Shifting the Gap	




taper length L	


1 
– 

Tr
an

sm
iss

io
n	


1 / L2	


Corrected Taper: Shifting the Gap	

tapering the period	




At all intermediate taper points, the operating mode:	


Must be propagating (not in the band gap).	


Must be guided (not part of a continuum).	


Intuitive!	


Easy to violate accidentally in photonic crystals.	


There is an adiabatic theorem!���
…but with two conditions	
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A Working Transition	


continuum always lies below guided band	

... just far away	




frequency (c/a)	


Bad Transmission:	


Good Transmission:	


 	




Finding New Materials / Processes ���
→ Designing New Structures	


The story of photonic crystals:	




Free Materials Online	


Photonic Crystals book: jdj.mit.edu/book	

	


Tutorial slides: jdj.mit.edu/photons/tutorial	

	


Free electromagnetic simulation software	

(FDTD, mode solver, etc.)	


jdj.mit.edu/wiki	



