The design and modeling of microstructured optical fiber

Steven G. Johnson
MIT / Harvard University

Outline

- What are these fibers (and why should I care)?
- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

Outline

-What are these fibers (and why should I care)?

- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

Optical Fibers Today

 (not to scale)more complex profiles to tune dispersion

"high" index doped-silica core
losses $\sim 0.2 \mathrm{~dB} / \mathrm{km}$
at $\lambda=1.55 \mu \mathrm{~m}$
(amplifiers every
50-100km)
silica cladding $\mathrm{n} \sim 1.45$

confined mode field diameter $\sim 8 \mu \mathrm{~m}$
protective polymer sheath
but this is
~ as good as it gets...
[R. Ramaswami \& K. N. Sivarajan, Optical Networks: A Practical Perspective]

The Glass Ceiling: Limits of Silica

Loss: amplifiers every $50-100 \mathrm{~km}$
...limited by Rayleigh scattering (molecular entropy)
...cannot use "exotic" wavelengths like $10.6 \mu \mathrm{~m}$

Nonlinearities: after $\sim 100 \mathrm{~km}$, cause dispersion, crosstalk, power limits
(limited by mode area \sim single-mode, bending loss) also cannot be made (very) large for compact nonlinear devices

Radical modifications to dispersion, polarization effects?
...tunability is limited by low index contrast

Breaking the Glass Ceiling: Hollow-core Bandgap Fibers

1000x better

Breaking the Glass Ceiling: Hollow-core Bandgap Fibers

[figs courtesy
Y. Fink et al., MIT]

[R. F. Cregan et al.,
Science 285, 1537 (1999)]

Breaking the Glass Ceiling: Hollow-core Bandgap Fibers

Guiding @ $10.6 \mu \mathrm{~m}$ (high-power CO_{2} lasers) loss $<1 \mathrm{~dB} / \mathrm{m}$ (material loss $\sim 10^{4} \mathrm{~dB} / \mathrm{m}$) [Temelkuran et al., Nature 420, 650 (2002)]

Guiding @ $1.55 \mu \mathrm{~m}$ loss $\sim 13 \mathrm{~dB} / \mathrm{km}$
[Smith, et al., Nature 424, 657 (2003)]

OFC 2004: $1.7 \mathrm{~dB} / \mathrm{km}$ BlazePhotonics

Breaking the Glass Ceiling II: Solid-core Holey Fibers

Breaking the Glass Ceiling II: Solid-core Holey Fibers

endlessly
single-mode
[T. A. Birks et al., Opt. Lett. 22, 961 (1997)]

polarization
nonlinear fibers

-maintaining [K. Suzuki, Opt. Express 9, 676 (2001)]

low-contrast linear fiber (large area)
[J. C. Knight et al., Elec. Lett. 34, 1347 (1998)]

Outline

-What are these fibers (and why should I care)?

- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

Universal Truths: Conservation Laws

an arbitrary-shaped fiber

Sequence of Computation

(1) Plot all solutions of infinite cladding as ω vs. β

empty spaces (gaps): guiding possibilities
(2) Core introduces new states in empty spaces

- plot $\omega(\beta)$ dispersion relation
(3) Compute other stuff...

Conventional Fiber: Uniform Cladding

uniform cladding, index n

$$
\begin{aligned}
\omega & =\frac{c}{n} \sqrt{\beta^{2}+\left|\mathbf{k}_{t}\right|^{2}} \\
& \geq \frac{c \beta}{n}
\end{aligned}
$$

Conventional Fiber: Uniform Cladding

uniform cladding, index n

core with higher index n, pulls down index-guided mode(s)

$\omega=\frac{c}{n} \sqrt{\beta^{2}+\left|\mathbf{k}_{t}\right|^{2}}$
 $$
\geq c \beta
$$
 n

PCF: Periodic Cladding

periodic cladding $\varepsilon(x, y)$
β_{\odot}

Bloch's Theorem for periodic systems: fields can be written:

periodic functions on primitive cell
satisfies eigenproblem (Hermitian if lossless)
$\nabla_{\mathbf{k}_{t}, \beta} \times \frac{1}{\varepsilon} \nabla_{\mathbf{k}_{t}, \beta} \times \mathbf{H}=\frac{\omega^{2}}{c^{2}} \mathbf{H}$
constraint: $\quad \nabla_{\mathbf{k}_{t}, \beta} \cdot \mathbf{H}=0$
where:

$$
\nabla_{\mathbf{k}_{t}, \beta}=\nabla+i \mathbf{k}_{t}+i \beta \hat{\mathbf{z}}
$$

PCF: Cladding Eigensolution

Finite cell $\boldsymbol{\rightarrow}$ discrete eigenvalues ω_{n}
Want to solve for $\omega_{n}\left(\mathbf{k}_{t}, \beta\right)$, \& plot vs. β for "all" n, \mathbf{k}_{t}

$$
\text { constraint: } \quad \nabla_{\mathbf{k}_{t}, \beta} \cdot \mathbf{H}=0
$$

$$
\nabla_{\mathbf{k}_{t}, \beta} \times \frac{1}{\varepsilon} \nabla_{\mathbf{k}_{t}, \beta} \times \mathbf{H}_{n}=\frac{\omega_{n}^{2}}{c^{2}} \mathbf{H}_{n}
$$

$$
\text { where: } \nabla_{\mathbf{k}_{t}, \beta}=\nabla+i \mathbf{k}_{t}+i \beta \hat{\mathbf{z}}
$$

$$
\mathbf{H}(x, y) e^{i\left(\beta z+\mathbf{k}_{t} \mathbf{x}_{t}-\omega t\right)}
$$

(1) Limit range of \mathbf{k}_{t} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis
(3) Efficiently solve eigenproblem: iterative methods
(1) Limit range of \mathbf{k}_{t} : irreducible Brillouin zone
-Bloch's theorem: solutions are periodic in \mathbf{k}_{t}

irreducible Brillouin zone: reduced by symmetry
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis
(3) Efficiently solve eigenproblem: iterative methods

眯
 PCF: Cladding Eigensolution

(1) Limit range of \mathbf{k}_{t} : irreducible Brillouin zone

2 Limit degrees of freedom: expand \mathbf{H} in finite basis

- must satisfy constraint: $\nabla_{\mathbf{k}_{t}, \beta} \cdot \mathbf{H}=0$

Planewave (FFT) basis
$\mathbf{H}\left(\mathbf{x}_{t}\right)=\sum_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i \mathbf{G} \cdot \mathbf{x}_{t}}$
constraint: $\mathbf{H}_{\mathbf{G}} \cdot(\mathbf{G}+\mathbf{k}+\beta \hat{\mathbf{z}})=0$
uniform "grid," periodic boundaries, simple code, $\mathrm{O}(N \log N)$

Finite-element basis

3 Efficiently solve eigenproblem: iterative methods

PCF: Cladding Eigensolution

(1) Limit range of \mathbf{k}_{t} : irreducible Brillouin zone

2 Limit degrees of freedom: expand \mathbf{H} in finite basis (N)

$$
|\mathbf{H}\rangle=\mathbf{H}\left(\mathbf{x}_{t}\right)=\sum_{m=1}^{N} h_{m} \mathbf{b}_{m}\left(\mathbf{x}_{t}\right) \quad \text { solve: } \hat{A}|\mathbf{H}\rangle=\omega^{2}|\mathbf{H}\rangle
$$

$$
\begin{gathered}
\text { finite matrix problem: } A h=\omega^{2} B h \\
\langle\mathbf{f} \mid \mathbf{g}\rangle=\int \mathbf{f}^{*} \cdot \mathbf{g} \quad A_{m \ell}=\left\langle\mathbf{b}_{m}\right| \hat{A}\left|\mathbf{b}_{\ell}\right\rangle \quad B_{m \ell}=\left\langle\mathbf{b}_{m} \mid \mathbf{b}_{\ell}\right\rangle
\end{gathered}
$$

(3) Efficiently solve eigenproblem: iterative methods

PCF: Cladding Eigensolution
(1) Limit range of \mathbf{k}_{t} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis

3 Efficiently solve eigenproblem: iterative methods

$$
A h=\omega^{2} B h
$$

Slow way: compute $A \& B$, ask LAPACK for eigenvalues

- requires $\mathrm{O}\left(N^{2}\right)$ storage, $\mathrm{O}\left(N^{\beta}\right)$ time

Faster way:

- start with initial guess eigenvector h_{0}
- iteratively improve
$-\mathrm{O}(N p)$ storage, $\sim \mathrm{O}\left(N p^{2}\right)$ time for p eigenvectors (p smallest eigenvalues)
(1) Limit range of \mathbf{k}_{t} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis

3 Efficiently solve eigenproblem: iterative methods

$$
A h=\omega^{2} B h
$$

Many iterative methods:

- Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization

PCF: Cladding Eigensolution

(1) Limit range of \mathbf{k}_{t} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis

3 Efficiently solve eigenproblem: iterative methods

$$
A h=\omega^{2} B h
$$

Many iterative methods:

- Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization
for Hermitian matrices, smallest eigenvalue ω_{0} minimizes:
"variational theorem"

$$
\omega_{0}^{2}=\min _{h} \frac{h^{\prime} A h}{h^{\prime} B h}
$$ minimize by conjugate-gradient, (or multigrid, etc.)

PCF: Holey Silica Cladding
 $$
r=0.1 a
$$

PCF: Holey Silica Cladding

$$
r=0.22973 a
$$

PCF: Holey Silica Cladding

PCF: Holey Silica Cladding
 $$
r=0.37193 a
$$

PCF: Holey Silica Cladding
 $r=0.4 a$

PCF: Holey Silica Cladding

$$
r=0.42557 a
$$

PCF: Holey Silica Cladding
 $$
r=0.45 a
$$

PCF: Holey Silica Cladding $r=0.45 a$

Bragg Fiber Cladding

Bragg fiber gaps (1d eigenproblem)
ω

$\beta=0$: normal incidence

Omnidirectional Cladding

Outline

-What are these fibers (and why should I care)?

- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

Sequence of Computation

(1) Plot all solutions of infinite cladding as ω vs. β

empty spaces (gaps): guiding possibilities
(2) Core introduces new states in empty spaces

- plot $\omega(\beta)$ dispersion relation
(3) Compute other stuff...

Computing Guided (Core) Modes

$$
\begin{gathered}
\nabla_{\beta} \times \frac{1}{\varepsilon} \nabla_{\beta} \times \mathbf{H}_{n}=\frac{\omega_{n}{ }^{2}}{c^{2}} \mathbf{H}_{n} \\
\text { constraint: } \nabla_{\beta} \cdot \mathbf{H}=0
\end{gathered}
$$

where: $\nabla_{\beta}=\nabla+i \beta \hat{\mathbf{z}}$
magnetic field $=\mathbf{H}(x, y) e^{i(\beta z-\omega t)}$

Same differential equation as before, ...except no \mathbf{k}_{t}

- can solve the same way

New considerations:
(1) Boundary conditions
(2) Leakage (finite-size) radiation loss
(3) Interior eigenvalues

Computing Guided (Core) Modes

(1) Boundary conditions
computational cell

Only care about guided modes:

- exponentially decaying outside core

Effect of boundary cond. decays exponentially

- mostly, boundaries are irrelevant! periodic (planewave), conducting, absorbing all okay
(2) Leakage (finite-size) radiation loss
(3) Interior eigenvalues

Guided Mode in a Solid Core

small computation: only lowest- ω band!

Fixed-frequency Modes?

Here, we are computing $\omega\left(\beta^{\prime}\right)$, but we often want $\beta\left(\omega^{\prime}\right)-\lambda$ is specified

No problem!
Just find root of $\omega\left(\beta^{\prime}\right)-\omega^{\prime}$, using Newton's method:
(Factor of 3-4 in time.)
$\beta^{\prime} \leftarrow \beta^{\prime}-\frac{\omega-\omega^{\prime}}{d \omega / d \beta}$
group velocity $=$ power / (energy density)
(a.k.a. Hellman-Feynman theorem,
a.k.a. first-order perturbation theory, a.k.a. " k-dot- p " theory)

Computing Guided (Core) Modes

1 Boundary conditions
computational cell

Only care about guided modes:

- exponentially decaying outside core

Effect of boundary cond. decays exponentially

- mostly, boundaries are irrelevant! periodic (planewave), conducting, absorbing all okay
...except when we want (small) finite-size losses...
(2) Leakage (finite-size) radiation loss
(3) Interior eigenvalues

Computing Guided (Core) Modes

(1) Boundary conditions
(2) Leakage (finite-size) radiation loss

Use PML absorbing boundary layer
perfectly matched layer
[Berenger, J. Comp. Phys. 114, 185 (1994)]
...with iterative method that works for non-Hermitian (dissipative) systems: Jacobi-Davidson, ...

Or imaginary-distance BPM: [Saitoh, IEEE J. Quantum Elec. 38, 927 (2002)] in imaginary z, largest β (fundamental) mode grows exponentially

Computing Guided (Core) Modes

(2) Leakage (finite-size) radiation loss imaginary-distance BPM
[Saitoh, IEEE J. Quantum Elec. 38, 927 (2002)]

(3) Interior eigenvalues

Computing Guided (Core) Modes

Gap-guided modes lie above continuum
($\sim N$ states for N-hole cell)
...but most methods compute smallest ω (or largest β)
(1) Boundary conditions
(2) Leakage (finite-size) radiation loss
(3) Interior eigenvalues
[J. Broeng et al., Opt. Lett. 25, 96 (2000)]

Computing Guided (Core) Modes

Gap-guided modes lie above continuum ($\sim N$ states for N-hole cell)
...but most methods compute smallest ω (or largest β)
(1) Boundary conditions
(2) Leakage (finite-size) radiation loss

3 Interior (of the spectrum) eigenvalues

(i)
Compute N lowest states first: deflation (orthogonalize to get higher states)
[see previous slide]
(ii) Use interior eigensolver method-
...closest eigenvalues to ω_{0} (mid-gap)
Jacobi-Davidson,
Arnoldi with shift-and-invert, smallest eigenvalues of $\left(\mathrm{A}-\omega_{0}{ }^{2}\right)^{2}$
... convergence often slower
(iii) Other methods: FDTD, etc...

Interior Eigenvalues by FDTD

finite-difference time-domain

Simulate Maxwell's equations on a discrete grid, + PML boundaries $+e^{i \beta z} z$-dependence

- Excite with broad-spectrum dipole (\uparrow) source

signal processing
complex ω_{n}
[Mandelshtam,
J. Chem. Phys. 107, 6756 (1997)

Response is many sharp peaks, one peak per mode
decay rate in time gives loss: $\operatorname{Im}[\beta]=-\operatorname{Im}[\omega] / d \omega / d \beta$

Interior Eigenvalues by FDTD

finite-difference time-domain
Simulate Maxwell's equations on a discrete grid, + PML boundaries $+e^{i \beta z} z$-dependence

- Excite with broad-spectrum dipole (\uparrow) source
 mode field profile

narrow-spectrum source

An Easier Problem: Bragg-fiber Modes

\ldots search for complex β that satisfies: finite at $r=0$, outgoing at $r=\infty$

Hollow Metal Waveguides, Reborn

modes are directly analogous to those in hollow metal waveguide

An Old Friend: the TE_{01} mode

lowest-loss mode, just as in metal
(near) node at interface
= strong confinement
= low losses
non-degenerate mode

- cannot be split
$=$ no birefringence or PMD

Bushels of Bessels

- A General Multipole Method

敆[White, Opt. Express 9, 721 (2001)]
only cylinders allowed

$$
\text { field } \sim \sum_{m}^{M} c_{m} J_{m}+d_{m} Y_{m}
$$

(m is not conserved)

> With N cylinders, get $2 N M \times 2 N M$ matrix of boundary conditions

Solution gives full complex β, but takes $\mathrm{O}\left(N^{3}\right)$ time

- more than 4-5 periods is difficult
future: "Fast Multipole Method" should reduce to $\mathrm{O}(N \log N)$?

Outline

-What are these fibers (and why should I care)?

- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

All Imperfections are Small (or the fiber wouldn't work)

- Material absorption: small imaginary $\Delta \varepsilon$
- Nonlinearity: small $\Delta \varepsilon \sim|\mathbf{E}|^{2}$
- Acircularity (birefringence): small ε boundary shift
- Bends: small $\Delta \varepsilon \sim \Delta x / R_{\text {bend }}$
- Roughness: small $\Delta \varepsilon$ or boundary shift

Weak effects, long distances: hard to compute directly

- use perturbation theory

Perturbation Theory and Related Methods

(Coupled-Mode Theory, Volume-Current Method, etc.)

Given solution for ideal system compute approximate effect of small changes

...solves hard problems starting with easy problems
\& provides (semi) analytical insight

Perturbation Theory

for Hermitian eigenproblems

given eigenvectors/values: $\hat{O}|\boldsymbol{u}\rangle=\boldsymbol{u}|\boldsymbol{u}\rangle$
...find change $\Delta u \& \Delta|u\rangle$ for small $\Delta \hat{O}$

Solution:

expand as power series in $\Delta \hat{O}$

$$
\begin{gathered}
\Delta u=0+\Delta u^{(1)}+\Delta u^{(2)}+\ldots \\
\& \Delta u\rangle=0+\Delta u u^{(1)}+\ldots \\
\Delta u^{(1)}=\frac{\langle u \Delta \hat{O} u\rangle}{\langle u \mid u\rangle} \quad \begin{array}{c}
\text { (first order is usually enough) }
\end{array}
\end{gathered}
$$

Perturbation Theory

for electromagnetism

$$
\begin{gathered}
\Delta \omega^{(1)}=\frac{c^{2}}{2 \omega} \frac{\langle\mathbf{H} \Delta \hat{A} \mid \mathbf{H}\rangle}{\langle\mathbf{H} \mid \mathbf{H}\rangle} \\
=-\frac{\omega \int \Delta \varepsilon|\mathbf{E}|^{2}}{2 \int \varepsilon \mathbf{E}^{2}} \underbrace{}_{\begin{array}{c}
\text {..e.g. absorption } \\
\text { gives } \\
\text { imaginary } \Delta \omega \\
\text { = decay! }
\end{array}} \\
\Delta \beta^{(1)}=\Delta \omega^{(1)} / v_{g} \quad v_{g}=\frac{d \omega}{d \beta}
\end{gathered}
$$

A Quantitative Example

...but what about the cladding?
...some field penetrates!
\& may need to use very "bad" material
to get high index contrast

Suppressing Cladding Losses

Material absorption: small imaginary $\Delta \varepsilon$

Mode Losses
\vdots
Bulk Cladding Losses

Large differential loss
TE_{01} strongly suppresses cladding absorption
(like ohmic loss, for metal)

High-Power Transmission at $10.6 \mu \mathrm{~m}$ (no previous dielectric waveguide)

Polymer losses @ $10.6 \mu \mathrm{~m} \sim 50,000 \mathrm{~dB} / \mathrm{m} .$.

[figs courtesy Y. Fink et al., MIT]

Quantifying Nonlinearity

Kerr nonlinearity: small $\Delta \varepsilon \sim|E|^{2}$
$\Delta \beta \sim$ power $P \sim 1 /$ lengthscale for nonlinear effects

$$
\gamma=\Delta \beta / P
$$

= nonlinear-strength parameter determining self-phase modulation (SPM), four-wave mixing (FWM), ...
(unlike "effective area," tells where the field is, not just how big)

Suppressing Cladding Nonlinearity

Acircularity \& Perturbation Theory

(or any shifting-boundary problem)

FAILS for high index contrast!
beware field discontinuity... fortunately, a simple correction exists
[S. G. Johnson et al., PRE 65, 066611 (2002)]

Acircularity \& Perturbation Theory

 (or any shifting-boundary problem)

Loss from Roughness/Disorder

$$
\vec{\sim} \sim \mathrm{B}_{\mathrm{C}}^{\rightarrow}
$$

volume-current method or Green's functions with first Born approximation

Loss from Roughness/Disorder

$$
\vec{J} \sim \Delta \varepsilon \vec{E}_{0}
$$

For surface roughness, $\underset{\text { including field discontinuities: }}{\substack{\text { For surface } \\ \\ \sim}} \vec{E}_{\|}-\varepsilon \Delta \varepsilon^{-1} \vec{D}_{\perp}$

Loss from Roughness/Disorder

So, compute power P radiated by one localized source J, and loss rate $\sim \mathrm{P} *$ (mean disorder strength)

Effect of an Incomplete Gap on uncorrelated surface roughness loss

Considerations for Roughness Loss

- Band gap can suppress some radiation
- typically by at most $\sim 1 / 2$, depending on crystal
- Loss $\sim \Delta \varepsilon^{2} \sim 1000$ times larger than for silica
- Loss \sim fraction of $|\mathbf{E}|^{2}$ in solid material
- factor of $\sim 1 / 5$ for 7 -hole PCF
$-\sim 10^{-5}$ for large-core Bragg-fiber design
- Hardest part is to get reliable statistics for disorder.

Using perturbations to design big effects

Perturbation Theory and Dispersion

 when two distinct modes cross \& interact, unusual dispersion is produced

Perturbation Theory and Dispersion

 when two distinct modes cross \& interact, unusual dispersion is produced

Two Localized Modes $=$ Very Strong Dispersion

[T. Engeness et al., Opt. Express 11, 1175 (2003)]

(Different-Symmetry) Slow-light Modes = Anomalous Dispersion

(Different-Symmetry) Slow-light Modes = Anomalous Dispersion

[M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004)]

(Different-Symmetry) Slow-light Modes = Anomalous Dispersion

Uses gap at $\beta=0$: perfect metal [1960]
or Bragg fiber or high-index PCF
[M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004)]

Further Reading

Reviews:

- J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:

Molding the Flow of Light (Princeton Univ. Press, 1995).

- P. Russell, "Photonic-crystal fibers," Science 299, 358 (2003).

This Presentation, Free Software, Other Material:
http://ab-initio.mit.edu/photons/tutorial

