# The design and modeling of microstructured optical fiber

Steven G. Johnson

MIT / Harvard University

### Outline

- What are these fibers (and why should I care)?
- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

### Outline

- What are these fibers (and why should I care)?
- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

## Optical Fibers Today

(not to scale)

more complex profiles to tune dispersion



losses ~ 0.2 dB/kmat  $\lambda=1.55\mu\text{m}$ (amplifiers every 50-100km)

silica cladding

n ~ 1.45

confined mode field diameter  $\sim 8\mu m$ 

protective polymer sheath

but this isas good asit gets...

[ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ]

## The Glass Ceiling: Limits of Silica

Loss: amplifiers every 50–100km

...limited by Rayleigh scattering (molecular entropy)

...cannot use "exotic" wavelengths like  $10.6\mu m$ 

Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits (limited by mode area ~ single-mode, bending loss)

also cannot be made (very) large for compact nonlinear devices

Radical modifications to dispersion, polarization effects?

...tunability is limited by low index contrast



## Breaking the Glass Ceiling:

## Hollow-core Bandgap Fibers



## Breaking the Glass Ceiling:

## Hollow-core Bandgap Fibers





# Breaking the Glass Ceiling: Hollow-core Bandgap Fibers



[ figs courtesy Y. Fink *et al.*, MIT ]



Guiding @  $10.6\mu$ m (high-power  $CO_2$  lasers)  $loss < 1 \frac{dB}{m}$ (material loss ~  $10^4 \frac{dB}{m}$ )

[ Temelkuran *et al.*, *Nature* **420**, 650 (2002) ]

[ R. F. Cregan et al., Science **285**, 1537 (1999) ]



Guiding @  $1.55\mu$ m loss ~ 13dB/km

[ Smith, et al., Nature **424**, 657 (2003) ]

OFC 2004: 1.7dB/km
BlazePhotonics

# Breaking the Glass Ceiling II: Solid-core Holey Fibers





# Breaking the Glass Ceiling II: Solid-core Holey Fibers



# endlessly single-mode

[ T. A. Birks *et al.*, *Opt. Lett.* **22**, 961 (1997) ]

#### nonlinear fibers





# polarization-maintaining

[ K. Suzuki, *Opt. Express* **9**, 676 (2001) ]



### low-contrast linear fiber (large area)

[ J. C. Knight *et al.*, *Elec. Lett.* **34**, 1347 (1998) ]

### Outline

- What are these fibers (and why should I care)?
- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

## Universal Truths: Conservation Laws

an arbitrary-shaped fiber



(1) Linear, time-invariant system: (nonlinearities are small correction)

frequency ω is conserved

(2) z-invariant system: (bends etc. are small correction)

wavenumber  $\beta$  is conserved

electric (E) and magnetic (H) fields can be chosen:

$$\mathbf{E}(x,y) e^{i(\beta z - \omega t)}, \quad \mathbf{H}(x,y) e^{i(\beta z - \omega t)}$$



## Sequence of Computation

1 Plot all solutions of infinite cladding as  $\omega$  vs.  $\beta$ 



empty spaces (gaps): guiding possibilities

- Core introduces new states in empty spaces

   plot ω(β) dispersion relation
  - 3 Compute other stuff...

## Conventional Fiber: Uniform Cladding

uniform cladding, index n



$$\omega = \frac{c}{n} \sqrt{\beta^2 + |\mathbf{k}_t|^2}$$

$$\geq \frac{c\beta}{n}$$



## Conventional Fiber: Uniform Cladding

uniform cladding, index n



core with higher index n'

pulls down

index-guided mode(s)

$$\omega = \frac{c}{n} \sqrt{\beta^2 + |\mathbf{k}_t|^2}$$

$$\geq \frac{c\beta}{n}$$



## PCF: Periodic Cladding

periodic cladding  $\varepsilon(x,y)$ 



Bloch's Theorem for periodic systems: fields can be written:



satisfies
eigenproblem
(Hermitian
if lossless)

$$\nabla_{\mathbf{k}_{t},\beta} \times \frac{1}{\varepsilon} \nabla_{\mathbf{k}_{t},\beta} \times \mathbf{H} = \frac{\omega^{2}}{c^{2}} \mathbf{H}$$

constraint:  $\nabla_{\mathbf{k} \cdot \boldsymbol{\beta}} \cdot \mathbf{H} = 0$ 

where:

$$\nabla_{\mathbf{k}_t,\beta} = \nabla + i\mathbf{k}_t + i\beta\hat{\mathbf{z}}$$

*Finite* cell  $\rightarrow$  *discrete* eigenvalues  $\omega_n$ 

Want to solve for  $\omega_n(\mathbf{k}_t, \beta)$ , & plot vs.  $\beta$  for "all" n,  $\mathbf{k}_t$ 



$$\nabla_{\mathbf{k}_{t},\beta} \times \frac{1}{\varepsilon} \nabla_{\mathbf{k}_{t},\beta} \times \mathbf{H}_{n} = \frac{\omega_{n}^{2}}{c^{2}} \mathbf{H}_{n}$$

constraint: 
$$\nabla_{\mathbf{k}_t,\beta} \cdot \mathbf{H} = 0$$

where: 
$$\nabla_{\mathbf{k}_t,\beta} = \nabla + i\mathbf{k}_t + i\beta\mathbf{\hat{z}}$$
  
 $\mathbf{H}(x,y) \ e^{i(\beta z + \mathbf{k}_t \mathbf{x}_t - \omega t)}$ 

- 1 Limit range of  $\mathbf{k}_t$ : irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods



- 1 Limit range of  $\mathbf{k}_t$ : irreducible Brillouin zone
  - —Bloch's theorem: solutions are periodic in  $\mathbf{k}_t$



irreducible Brillouin zone: reduced by symmetry

- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods



- 1 Limit range of  $\mathbf{k}_t$ : irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis

— must satisfy constraint: 
$$\nabla_{\mathbf{k}_t,\beta} \cdot \mathbf{H} = 0$$

#### Planewave (FFT) basis

# $\mathbf{H}(\mathbf{x}_t) = \sum_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{x}_t}$

constraint:  $\mathbf{H}_{\mathbf{G}} \cdot (\mathbf{G} + \mathbf{k} + \beta \hat{\mathbf{z}}) = 0$ 

uniform "grid," periodic boundaries, simple code, O(N log N)

#### Finite-element basis



[ figure: Peyrilloux *et al.*, *J. Lightwave Tech.* **21**, 536 (2003) ] constraint, boundary conditions:

#### Nédélec elements

[ Nédélec, *Numerische Math.* **35**, 315 (1980) ]

nonuniform mesh, more arbitrary boundaries, complex code & mesh, O(N)

3 Efficiently solve eigenproblem: iterative methods

- 1 Limit range of  $\mathbf{k}_t$ : irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis (N)

$$|\mathbf{H}\rangle = \mathbf{H}(\mathbf{x}_t) = \sum_{m=1}^{N} h_m \mathbf{b}_m(\mathbf{x}_t)$$
 solve:  $\hat{A}|\mathbf{H}\rangle = \omega^2 |\mathbf{H}\rangle$ 

finite matrix problem:  $Ah = \omega^2 Bh$ 

$$\langle \mathbf{f} | \mathbf{g} \rangle = \int \mathbf{f}^* \cdot \mathbf{g}$$
  $A_{m\ell} = \langle \mathbf{b}_m | \hat{A} | \mathbf{b}_\ell \rangle$   $B_{m\ell} = \langle \mathbf{b}_m | \mathbf{b}_\ell \rangle$ 

3 Efficiently solve eigenproblem: iterative methods



- 1 Limit range of  $\mathbf{k}_t$ : irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Slow way: compute A & B, ask LAPACK for eigenvalues

— requires  $O(N^2)$  storage,  $O(N^3)$  time

### Faster way:

- start with *initial guess* eigenvector  $h_0$
- *iteratively* improve
- O(Np) storage, ~  $O(Np^2)$  time for p eigenvectors (p smallest eigenvalues)



- 1 Limit range of  $\mathbf{k}_t$ : irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

### Many iterative methods:

Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
 Rayleigh-quotient minimization

- Limit range of  $\mathbf{k}_{t}$ : irreducible Brillouin zone
- Limit degrees of freedom: expand H in finite basis
- Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue  $\omega_0$  minimizes:

$$\omega_0^2 = \min_h \frac{h' \ Ah}{h' \ Bh}$$

 $\omega_0^2 = \min_h \frac{h' \ Ah}{h' \ Rh}$  minimize by conjugate-gradient, (or multigrid, etc.)









r = 0.17717a











r = 0.30912a





r = 0.34197a





r = 0.37193a











$$r = 0.42557a$$





r = 0.45a





r = 0.45a



below air line: surface states of air core



## Bragg Fiber Cladding

at large radius,



radial  $k_r$ (Bloch wavevector)



Bragg fiber gaps (1d eigenproblem)



 $\beta$  = 0: normal incidence



## Omnidirectional Cladding

Bragg fiber gaps (1d eigenproblem)



### Outline

- What are these fibers (and why should I care)?
- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)



#### Sequence of Computation

1 Plot all solutions of infinite cladding as  $\omega$  vs.  $\beta$ 



empty spaces (gaps): guiding possibilities

- Core introduces new states in empty spaces

   plot ω(β) dispersion relation
  - 3 Compute other stuff...



$$\nabla_{\beta} \times \frac{1}{\varepsilon} \nabla_{\beta} \times \mathbf{H}_{n} = \frac{\omega_{n}^{2}}{c^{2}} \mathbf{H}_{n}$$

constraint:  $\nabla_{\beta} \cdot \mathbf{H} = 0$ 

where:  $\nabla_{\beta} = \nabla + i\beta \hat{\mathbf{z}}$ 

magnetic field =  $\mathbf{H}(x,y) e^{i(\beta z - \omega t)}$ 

Same differential equation as before, ... except no  $\mathbf{k}_t$ 

— can solve the *same* way

#### New considerations:

- Boundary conditions
- 2 Leakage (finite-size) radiation loss
- 3 Interior eigenvalues



Boundary conditions

computational cell



Only care about guided modes:

exponentially decaying outside core

Effect of boundary cond. decays exponentially

— mostly, boundaries are irrelevant! periodic (planewave), conducting, absorbing all okay

- 2 Leakage (finite-size) radiation loss
- 3 Interior eigenvalues



#### Guided Mode in a Solid Core

small computation: only lowest-ω band!





#### Fixed-frequency Modes?

Here, we are computing  $\omega(\beta')$ , but we often want  $\beta(\omega') - \lambda$  is specified

No problem!

Just find root of  $\omega(\beta') - \omega'$ , using Newton's method: (Factor of 3–4 in time.)

$$\beta' \leftarrow \beta' - \frac{\omega - \omega'}{d\omega/d\beta}$$

group velocity = power / (energy density)

(a.k.a. Hellman-Feynman theorem, a.k.a. first-order perturbation theory, a.k.a. "k-dot-p" theory)



Boundary conditions

computational cell



Only care about guided modes:

exponentially decaying outside core

Effect of boundary cond. decays exponentially

— mostly, boundaries are irrelevant! periodic (planewave), conducting, absorbing all okay



...except when we want (small) finite-size losses...

- 2 Leakage (finite-size) radiation loss
- 3 Interior eigenvalues



- Boundary conditions
- 2 Leakage (finite-size) radiation loss



Use PML absorbing boundary layer

perfectly matched layer

[ Berenger, J. Comp. Phys. 114, 185 (1994) ]

...with iterative method that works for non-Hermitian (dissipative) systems: Jacobi-Davidson, ...

Or imaginary-distance BPM: [Saitoh, IEEE J. Quantum Elec. 38, 927 (2002)] in imaginary z, largest  $\beta$  (fundamental) mode grows exponentially

3 Interior eigenvalues



1 Boundary conditions

n=1.45

2 Leakage (finite-size) radiation loss

imaginary-distance BPM

[ Saitoh, IEEE J. Quantum Elec. 38, 927 (2002) ]



3 Interior eigenvalues





- 1 Boundary conditions
- 2 Leakage (finite-size) radiation loss
- 3 Interior eigenvalues

[ J. Broeng et al., Opt. Lett. 25, 96 (2000) ]

Gap-guided modes lie above continuum (~ N states for N-hole cell)

...but most methods compute smallest  $\omega$  (or largest  $\beta$ )







- 1 Boundary conditions
- 2 Leakage (finite-size) radiation loss
- 3 Interior (of the spectrum) eigenvalues
  - i Compute N lowest states first: deflation (orthogonalize to get higher states)

    [ see previous slide ]
    - Use interior eigensolver method—
      ...closest eigenvalues to  $\omega_0$  (mid-gap)

      Jacobi-Davidson,

      Arnoldi with shift-and-invert,

      smallest eigenvalues of  $(A-\omega_0^2)^2$ ... convergence often slower
    - iii Other methods: FDTD, etc...

- Gap-guided modes lie above continuum (~ N states for N-hole cell)
- ...but most methods compute smallest  $\omega$  (or largest  $\beta$ )



#### Interior Eigenvalues by FDTD

finite-difference time-domain



Simulate Maxwell's equations on a discrete grid, + PML boundaries +  $e^{i\beta z}$  z-dependence

• Excite with broad-spectrum dipole (\*) source



decay rate in time gives loss:  $Im[\beta] = -Im[\omega] / d\omega/d\beta$ 



#### Interior Eigenvalues by FDTD

finite-difference time-domain



Simulate Maxwell's equations on a discrete grid, + PML boundaries +  $e^{i\beta z}$  z-dependence

• Excite with broad-spectrum dipole (\*) source



#### An Easier Problem: Bragg-fiber Modes



...search for complex  $\beta$  that satisfies: finite at r=0, outgoing at  $r=\infty$ 

#### Hollow Metal Waveguides, Reborn

metal waveguide modes

OmniGuide fiber modes



modes are directly analogous to those in hollow metal waveguide



## An Old Friend: the TE<sub>01</sub> mode



#### Bushels of Bessels

#### —A General Multipole Method

[ White, Opt. Express 9, 721 (2001) ]



only cylinders allowed

Each cylinder has its own Bessel expansion:

field 
$$\sim \sum_{m}^{M} c_{m} J_{m} + d_{m} Y_{m}$$

(*m* is *not* conserved)

With N cylinders,

get  $2NM \times 2NM$  matrix of boundary conditions



Solution gives full complex  $\beta$ ,

but takes  $O(N^3)$  time

— more than 4–5 periods is difficult

future: "Fast Multipole Method" should reduce to O(*N* log *N*)?

#### Outline

- What are these fibers (and why should I care)?
- The guiding mechanisms: index-guiding and band gaps
- Finding the guided modes
- Small corrections (with big impacts)

#### All Imperfections are Small

(or the fiber wouldn't work)

- Material absorption: small imaginary  $\Delta \epsilon$
- Nonlinearity: small  $\Delta \varepsilon \sim |\mathbf{E}|^2$
- Acircularity (birefringence): small ε boundary shift
- Bends: small  $\Delta \varepsilon \sim \Delta x / R_{\rm bend}$
- Roughness: small  $\Delta \epsilon$  or boundary shift

Weak effects, long distances: hard to compute directly

use perturbation theory

# Perturbation Theory and Related Methods

(Coupled-Mode Theory, Volume-Current Method, etc.)

Given solution for ideal system compute approximate effect of small changes

...solves hard problems starting with easy problems

& provides (semi) analytical insight

#### Perturbation Theory

for Hermitian eigenproblems

given eigenvectors/values: 
$$\hat{O}|u\rangle = u|u\rangle$$

...find change  $\Delta u \& \Delta |u\rangle$  for small  $\Delta \hat{O}$ 

#### Solution:

expand as power series in  $\Lambda \hat{O}$ 

$$\Delta u = 0 + \Delta u^{(1)} + \Delta u^{(2)} + \dots$$

$$\Delta u^{(1)} = \frac{\langle u | \Delta \hat{O} | u \rangle}{\langle u | u \rangle}$$
 (first order is usually enough)

& 
$$\Delta |u\rangle = 0 + \Delta |u\rangle^{(1)} + \dots$$

#### Perturbation Theory

for electromagnetism

$$\Delta \omega^{(1)} = \frac{c^2}{2\omega} \frac{\langle \mathbf{H} | \Delta \hat{A} | \mathbf{H} \rangle}{\langle \mathbf{H} | \mathbf{H} \rangle}$$
$$= -\frac{\omega}{2} \frac{\int \Delta \varepsilon |\mathbf{E}|^2}{\int \varepsilon |\mathbf{E}|^2}$$

...e.g. absorption gives imaginary  $\Delta \omega$  = decay!

$$\Delta \beta^{(1)} = \Delta \omega^{(1)} / v_g \qquad v_g = \frac{d\omega}{d\beta}$$

### A Quantitative Example

...but what about the cladding?

Gas can have low loss & nonlinearity

...some field penetrates!

& may need to use very "bad" material to get high index contrast

#### Suppressing Cladding Losses



Material absorption: small imaginary Δε

**Mode Losses** 

÷

**Bulk Cladding Losses** 

Large differential loss

TE<sub>01</sub> strongly suppresses cladding absorption

(like ohmic loss, for metal)



#### High-Power Transmission



at  $10.6\mu m$  (no previous dielectric waveguide)

Polymer losses @  $10.6\mu m \sim 50,000 dB/m...$ 



[ figs courtesy Y. Fink et al., MIT ]

#### Quantifying Nonlinearity

Kerr nonlinearity: small  $\Delta \varepsilon \sim |\mathbf{E}|^2$ 

 $\Delta\beta \sim \text{power } P \sim 1 / \text{lengthscale for nonlinear effects}$ 

$$\gamma = \Delta \beta / P$$

= nonlinear-strength parameter determining self-phase modulation (SPM), four-wave mixing (FWM), ...

(unlike "effective area," tells *where* the field is, not just how big)

## Suppressing Cladding Nonlinearity



**Mode Nonlinearity\* ∸** 

**Cladding Nonlinearity** 

Will be dominated by nonlinearity of air

~10,000 times weaker than in silica fiber (including factor of 10 in area)



\* "nonlinearity" =  $\Delta \beta^{(1)} / P = \gamma$ 

#### Acircularity & Perturbation Theory

(or any shifting-boundary problem)



beware field discontinuity...

fortunately, a simple correction exists

[ S. G. Johnson *et al.*, *PRE* **65**, 066611 (2002) ]

#### Acircularity & Perturbation Theory

(or any shifting-boundary problem)



#### Loss from Roughness/Disorder



imperfection acts like a volume current

$$\vec{J} \sim \Delta \varepsilon \, \vec{E}_0$$

volume-current method

or Green's functions with first Born approximation

#### Loss from Roughness/Disorder



imperfection acts like a volume current

$$\vec{J} \sim \Delta \varepsilon \, \vec{E}_0$$

For surface roughness,

For surface roughness, including field discontinuities: 
$$\vec{J} \sim \Delta \varepsilon \ \vec{E}_{\parallel} - \varepsilon \ \Delta \varepsilon^{-1} \ \vec{D}_{\perp}$$

#### Loss from Roughness/Disorder



uncorrelated disorder adds incoherently

So, compute power P radiated by *one* localized source J, and loss rate  $\sim$  P \* (mean disorder strength)

#### Effect of an Incomplete Gap

on uncorrelated surface roughness loss



Conventional waveguide (matching modal area)



...with Si/SiO<sub>2</sub> Bragg mirrors (1D gap)
50% lower losses (in dB)
same reflection

#### Considerations for Roughness Loss

- Band gap can suppress some radiation
  - typically by at most  $\sim 1/2$ , depending on crystal
- Loss ~  $\Delta \varepsilon^2$  ~ 1000 times larger than for silica
- Loss ~ fraction of |**E**|<sup>2</sup> in solid material
  - factor of  $\sim 1/5$  for 7-hole PCF
  - $\sim 10^{-5}$  for large-core Bragg-fiber design
- Hardest part is to get reliable statistics for disorder.

# Using perturbations to design big effects

#### Perturbation Theory and Dispersion

when two distinct modes cross & interact, unusual dispersion is produced



#### Perturbation Theory and Dispersion

when two distinct modes cross & interact, unusual dispersion is produced



# Two Localized Modes = Very Strong Dispersion



[ T. Engeness et al., Opt. Express 11, 1175 (2003) ]

## (Different-Symmetry) Slow-light Modes = Anomalous Dispersion



## (Different-Symmetry) Slow-light Modes = Anomalous Dispersion



[ M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004) ]

## (Different-Symmetry) Slow-light Modes = Anomalous Dispersion



[ M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004) ]

#### Further Reading

#### Reviews:

- J. D. Joannopoulos, R. D. Meade, and J. N. Winn, *Photonic Crystals: Molding the Flow of Light* (Princeton Univ. Press, 1995).
- P. Russell, "Photonic-crystal fibers," Science 299, 358 (2003).

This Presentation, Free Software, Other Material:

http://ab-initio.mit.edu/photons/tutorial