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Nano-photonic media (l-scale)

synthetic materials

strange waveguides

3d 
structures 

hollow-core fibers
optical phenomena

& microcavities
[B. Norris, UMN] [Assefa & Kolodziejski, 

MIT]

[Mangan, 
Corning]
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Photonic Crystals
periodic electromagnetic media

2-D

periodic in
two directions

3-D

periodic in
three directions

1-D

periodic in
one direction

can have a band gap: optical “insulators” 



Electronic and Photonic Crystals
atoms in diamond structure

wavevector

el
ec

tro
n 

en
er

gy

Pe
ri

od
ic

 M
ed

iu
m

Bl
oc

h 
w

av
es

:
Ba

nd
 D

ia
gr

am
dielectric spheres, diamond lattice

wavevector

ph
ot

on
 fr

eq
ue

nc
y



Electronic & Photonic Modeling
Electronic Photonic

• strongly interacting
   —entanglement, Coulomb
   —tricky approximations

• non-interacting (or weakly),
   —simple approximations
       (finite resolution)
   —any desired accuracy
     

• lengthscale dependent
     (from Planck’s h)

• scale-invariant
  —e.g. size ¥10 fi l ¥10
      (except materials may change)



Computational Photonics Problems

• Time-domain simulation
— start with current J(x,t)
— run “numerical experiment” to simulate E(x, t), H(x, t)

• Frequency-domain linear response
— start with harmonic current J(x, t) = e–iwt J(x)
— solve for steady-state harmonic fields E(x), H(x)
— involves solving linear equation Ax=b

• Frequency-domain eigensolver
— solve for source-free harmonic eigenfields

 E(x), H(x) ~ e–iwt 
— involves solving eigenequation Ax=w2x



Numerical Methods: Basis Choices
finite difference

† 

df
dx

ª
f (x + Dx) - f (x - Dx)

Dx
+ O(Dx 2)

discretize
unknowns

on regular grid

finite elements
in irregular “elements,”
approximate unknowns
by low-degree polynomial

spectral methods

+

+
+ …..

complete basis of
smooth functions
(e.g. Fourier series)

boundary-element methods
discretize only the
boundaries between
homogeneous media

…solve
integral equation

via Green’s functions



Numerical Methods: Basis Choices
finite difference

discretize
unknowns

on regular grid

finite elements
in irregular “elements,”
approximate unknowns
by low-degree polynomial

spectral methods

+

+
+ …..

complete basis of
smooth functions
(e.g. Fourier series)

boundary-element methods
discretize only the
boundaries between
homogeneous media

…solve
integral equation

via Green’s functions

Much easier to analyze, implement,
generalize, parallelize, optimize, …

Potentially much more efficient,
   especially for high resolution



Computational Photonics Problems           Numerical Methods: Basis Choices

• Time-domain simulation
      — start with current J(x,t)
      — run “numerical experiment” to
                 simulate E(x, t), H(x, t)

• Frequency-domain linear response
 — start with harmonic current J(x, t) = e–iwt J(x)
 — solve for steady-state harmonic fields E(x), H(x)
 — involves solving linear equation Ax=b

• Frequency-domain eigensolver
 — solve for source-free harmonic eigenfields

 E(x), H(x) ~ e–iwt 
 — involves solving eigenequation Ax=w2x

finite difference

† 

df
dx

ª
f (x + Dx) - f (x - Dx)

Dx
+ O(Dx 2)

finite elements
in irregular “elements,”
approximate unknowns
by low-degree polynomial

spectral methods

+
+

+ …..

boundary-element methods
discretize only the
boundaries between
homogeneous media



FDTD
Finite-Difference Time-Domain methods

Divide both space and time into discrete grids
— spatial resolution ∆x
— temporal resolution ∆t

Very general: arbitrary geometries, materials,
nonlinearities, dispersion, sources, …
    — any photonics calculation, in principle

  

† 

∂H
∂t
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1
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r 
— ¥ E ∂E

∂t
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1
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— ¥ H -

J
e

dielectric function e(x) = n2(x)



(i, j) (i+1, j)

(i, j+1)

Ey

Ex

Hz

The Yee Discretization (1966)
a cubic “voxel”: ∆x ¥ ∆y ¥ ∆z

Staggered grid in space:
            — every field component is stored on a different grid

(i, j, k) (i+1, j, k)
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(i, j) (i+1, j)

(i, j+1)

Ey

Ex

Hz

The Yee Discretization (1966)

all derivatives become center differences…
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The Yee Discretization (1966)
all derivatives become center differences…

including derivatives in time

† 

∂H
∂t t= nDt

= -
1
m

— ¥ E
t= nDt

ª
H(n +

1
2

) - H(n -
1
2

)

Dt

+ O(∆t2)
Explicit time-stepping:

      stability requires

† 

Dt <
Dx

#  dimensions

(vs. implicit time steps: invert large matrix at each step)



FDTD Discretization Upshot

• For stability, space and time resolutions are proportional
— doubling resolution in 3d requires

at least 16 = 24 times the work!

• But at least the error goes quadratically with resolution
…right?
…not necessarily!



Difficulty with a grid:
representing discontinuous materials?

“staircasing”

… how does this affect accuracy?



Field Discontinuity Degrades
Order of Accuracy

a

E
TE polarization (E in plane: discontinuous)

a



Sub-pixel smoothing

e?

Can eliminate
discontinuity

by “grayscaling”
— assign some average e

to each pixel

= discretizing a smoothed structure
— that means we are changing geometry
— can actually add to error



Past sub-pixel smoothing methods
can make error worse!

Three previous smoothing methods  & convergence is
still only linear

[ Dey, 1999 ]
[ Kaneda, 1997 ]

[ Mohammadi, 2005]



A Criterion for Accurate Smoothing

† 

~ De E||
2

- D(1
e

) D^
2È 

Î Í 
˘ 

˚ ˙ 
 
Ú

1st-order errors
from

smoothing De

We want the smoothing errors to be zero to 1st order
— minimizes error and 2nd-order convergent!

Use a tensor e:

† 

e

e

e-1 -1

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 

E||

E^

(in principal axes:)

[ Meade et al., 1993 ]



Consistently the Lowest Error
a

a

quadratic accuracy! quadratic!

[ Farjadpour et al., Opt. Lett. 2006 ]



… & in 3d too

(notice that
ranking of

other methods
has shuffled!)



A qualitatively different case: corners
still ~lowest error, but not quadratic

zero-perturbation
criterion

not satisfied
due to E divergence

at corner
— analytically,
error ~ ∆x1.404



Yes, but what can you do with FDTD?
Some common tasks:

• Frequency-domain response:
— put in harmonic source and wait for steady-state

• Transmission/reflection spectra:
— get entire spectrum from a single simulation

(Fourier transform of impulse response)

• Eigenmodes and resonant modes:
— get all modes from a single simulation

(some tricky signal processing)



Transmission Spectra in FDTD

e = 12

e = 1

a

example: a 90° bend, 2d strip waveguide

transmitted power = energy flux here:



Transmission Spectra in FDTD

e = 12

e = 1

a

Gaussian-pulse
current source J

† 

P(w) =
1
2

Re[Ew
* ¥ Hw ]dxÚ

† 

Ew = E(t)e-iwt dtÚ ª E(nDt)e-iwnDtDt
n
Â

Fourier-transform the fields at each x:



Transmission Spectra in FDTD

P(w)

P0(w)

transmission = P(w) / P0(w)

must always do two simulations: one for normalization

electric
field Ez:



Reflection Spectra in FDTD

e = 12

e = 1

† 

P(w) =
1
2

Re[Ew
* ¥ Hw ]dxÚ

† 

PR (w) =
1
2

Re[(Ew - Ew
0 )* ¥ (Hw - Hw

0 )]dxÚ

for reflection, subtract incident fields
(from normalization run)



Transmission/Reflection Spectra

e = 12

e = 1

a

T

R

1–T–R

wa / 2πc = a / l



Dimensionless Units

Maxwell’s equations are scale invariant
— most useful quantities are dimensionless ratios

like a / l, for a characteristic lengthscale a
— same ratio, same e, m = same solution

regardless of whether a = 1µm or 1km

Our (typical) approach:
     pick characteristic lengthscale a

– measure distance in units of a
– measure time in units of a/c
– measure w in units of 2πc/a = a / l
– ....



Absorbing Boundaries:
Perfectly Matched Layers

“perfect” absorber: PML Artificial absorbing material
overlapping the computation

Theoretically reflectionless

… but PML is no longer perfect
with finite resolution, 

so “gradually turn on” absorption
over finite-thickness PML



Computational Photonics Problems           Numerical Methods: Basis Choices

• Time-domain simulation
      — start with current J(x,t)
      — run “numerical experiment” to
                 simulate E(x, t), H(x, t)

• Frequency-domain linear response
 — start with harmonic current J(x, t) = e–iwt J(x)
 — solve for steady-state harmonic fields E(x), H(x)
 — involves solving linear equation Ax=b

• Frequency-domain eigensolver
 — solve for source-free harmonic eigenfields

 E(x), H(x) ~ e–iwt 
 — involves solving eigenequation Ax=w2x

finite difference

† 

df
dx

ª
f (x + Dx) - f (x - Dx)

Dx
+ O(Dx 2)

finite elements
in irregular “elements,”
approximate unknowns
by low-degree polynomial

spectral methods

+
+

+ …..

boundary-element methods
discretize only the
boundaries between
homogeneous media



A Maxwell Eigenproblem

  

† 

r 
— ¥

r 
E = -

1
c

∂
∂t

r 
H = i w

c
r 

H 

r 
— ¥

r 
H = e

1
c

∂
∂t

r 
E +

r 
J = -i w

c
e

r 
E 

0

dielectric function e(x) = n2(x)

First task:
get rid of this mess

  
— ¥

1
e

— ¥
r 
H = w

c
Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

2 r 
H 

eigen-operator eigen-value eigen-state

  — ⋅
r 
H = 0

+ constraint



Electronic & Photonic Eigenproblems

  
— ¥

1
e

— ¥
r 
H = w

c
Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

2 r 
H 

Electronic Photonic

  

† 

-
h2

2m
—2 + V

Ê 

Ë 
Á 

ˆ 

¯ 
˜ y = Ey

simple linear eigenproblem
(for linear materials)

nonlinear eigenproblem
(V depends on e density |y|2)

—many well-known
       computational techniques

Hermitian = real E & w, … Periodicity = Bloch’s theorem…



A 2d Model System

square lattice,
period a

dielectric “atom”
e=12 (e.g. Si)

a

a

E

H
TM



Periodic Eigenproblems
if eigen-operator is periodic, then Bloch-Floquet theorem applies:

  

r 
H ( r x ,t) = ei

r 
k ⋅r x -wt( ) r 

H r k (
r x )can choose:

periodic “envelope”
planewave

Corollary 1: k is conserved, i.e. no scattering of Bloch wave

Corollary 2:        given by finite unit cell,
so w are discrete wn(k)  

r 
H r k 



A More Familiar Eigenproblem

e = 12

e = 1

a

find the normal modes
of the waveguide:

x

† 

H(y, t) = H k (y)ei(kx-wt )

y

k

w
light cone

(all non-guided modes)

(propagation constant k
a.k.a. b)

band diagram / dispersion relation



Solving the Maxwell Eigenproblem

H(x,y)#ei(k⋅x – wt)† 

— + ik( ) ¥
1
e

— + ik( ) ¥ Hn =
wn

2

c 2 Hn

† 

— + ik( ) ⋅ H = 0

where:

constraint:

1

Want to solve for wn(k),
& plot vs. “all” k for “all” n, 

Finite cell Ë discrete eigenvalues wn

Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods
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Solving the Maxwell Eigenproblem: 1
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

—Bloch’s theorem: solutions are periodic in k

kx

ky

first Brillouin zone
= minimum |k| “primitive cell”

† 

2p
aG

M

X

irreducible Brillouin zone: reduced by symmetry



Solving the Maxwell Eigenproblem: 2a
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis (N)

3 Efficiently solve eigenproblem: iterative methods

H = H(xt ) = hmbm (x t )
m=1

N

Â solve: ˆ A H = w 2 H

Ah = w 2Bh

  Aml = bm
ˆ A bl   Bml = bm blf g = f * ⋅ gÚ

finite matrix problem:



Solving the Maxwell Eigenproblem: 2b
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

† 

(— + ik) ⋅ H = 0— must satisfy constraint:

Planewave (FFT) basis

H(x t ) = HGeiG⋅xt

G
Â

† 

HG ⋅ G + k( ) = 0constraint:

uniform “grid,” periodic boundaries,
simple code, O(N log N)

Finite-element basis
constraint, boundary conditions:

Nédélec elements
[ Nédélec, Numerische Math.

35, 315 (1980) ]

nonuniform mesh,
more arbitrary boundaries,

complex code & mesh, O(N)
[ figure: Peyrilloux et al.,

J. Lightwave Tech.
21, 536 (2003) ]



Solving the Maxwell Eigenproblem: 3a
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah = w 2Bh

Faster way:
— start with initial guess eigenvector h0
— iteratively improve
— O(Np) storage, ~ O(Np2) time for p eigenvectors

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N2) storage, O(N3) time

(p smallest eigenvalues)



Solving the Maxwell Eigenproblem: 3b
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah = w 2Bh
Many iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
     Rayleigh-quotient minimization



Solving the Maxwell Eigenproblem: 3c
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah = w 2Bh
Many iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
     Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue w0 minimizes:

w0
2 = min

h

h' Ah
h' Bh

minimize by preconditioned
 conjugate-gradient  (or…)

“variational
theorem”



Band Diagram of 2d Model System
(radius 0.2a rods, e=12)
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The Iteration Scheme is Important
(minimizing function of 104–108+ variables!)

Steepest-descent:  minimize (h + a —f) over a … repeat 

† 

w0
2 = min

h

h' Ah
h'Bh

= f (h)

Conjugate-gradient:  minimize (h + a d)
— d is —f + (stuff): conjugate to previous search dirs

Preconditioned steepest descent:  minimize (h + a d) 
— d = (approximate A-1) —f   ~  Newton’s method

Preconditioned conjugate-gradient:  minimize (h + a d)
— d is (approximate A-1) [—f + (stuff)]



The Iteration Scheme is Important
(minimizing function of ~40,000 variables)
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The Boundary Conditions are Tricky

e?

E|| is continuous

E^ is discontinuous
(D^ = eE^ is continuous)

Any single scalar e fails:
  (mean D) ≠ (any e) (mean E)

Use a tensor e: 

† 

e

e

e-1 -1

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 

E||

E^



The e-averaging is Important
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correct averaging
changes order 
of convergence
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(similar effects
in other E&M

numerics & analyses)



Gap, Schmap?
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But, what can we do with the gap?



Intentional “defects” are good

3D Photonic C rysta l with Defects

microcavities waveguides (“wires”)



Intentional “defects” in 2d

a

(Same computation, with supercell = many primitive cells)



Microcavity Blues
For cavities (point defects)
frequency-domain has its drawbacks:

• Best methods compute lowest-w bands,
   but Nd supercells have Nd modes
   below the cavity mode — expensive

• Best methods are for Hermitian operators,
   but losses requires non-Hermitian



Time-Domain Eigensolvers
(finite-difference time-domain = FDTD)

Simulate Maxwell’s equations on a discrete grid,
+ absorbing boundaries (leakage loss)

• Excite with broad-spectrum dipole (  ) source

Dw

Response is many
sharp peaks,

one peak per mode
complex wn [ Mandelshtam,

J. Chem. Phys. 107, 6756 (1997) ]

signal processing

decay rate in time gives loss
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Unreliability of Fitting Process
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Quantum-inspired signal processing (NMR spectroscopy):
Filter-Diagonalization Method (FDM)

[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

Given time series yn, write:

† 

yn = y(nDt) = ake
-iw k nDt

k
Â

…find complex amplitudes ak & frequencies wk
by a simple linear-algebra problem!

Idea: pretend y(t) is autocorrelation of a quantum system:

  

† 

ˆ H y = ih ∂
∂t

y

say:

† 

yn = y(0) y(nDt) = y(0) ˆ U n y(0)

time-∆t evolution-operator:   

† 

ˆ U = e-i ˆ H Dt / h



Filter-Diagonalization Method (FDM)
[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

† 

yn = y(0) y(nDt) = y(0) ˆ U n y(0)   

† 

ˆ U = e-i ˆ H Dt / h

We want to diagonalize U:  eigenvalues of U are eiw∆t

…expand U in basis of |y(n∆t)>:

† 

Um,n = y(mDt) ˆ U y(nDt) = y(0) ˆ U m ˆ U ˆ U n y(0) = ym +n +1

Umn given by yn’s — just diagonalize known matrix!



Filter-Diagonalization Summary
[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

Umn given by yn’s — just diagonalize known matrix!
A few omitted steps:
   —Generalized eigenvalue problem (basis not orthogonal) 
   —Filter yn’s (Fourier transform):

small bandwidth = smaller matrix (less singular)

  • resolves many peaks at once
  • # peaks not known a priori
  • resolve overlapping peaks
  • resolution >> Fourier uncertainty



Do try this at home

Bloch-mode eigensolver:
 http://ab-initio.mit.edu/mpb/

Filter-diagonalization:
 http://ab-initio.mit.edu/harminv/

Photonic-crystal tutorials (+ THIS TALK):
 http://ab-initio.mit.edu/

/photons/tutorial/

FDTD simulation:
 http://ab-initio.mit.edu/meep/



Meep (FDTD)   MPB (Eigensolver)

Free/open-source
software (GNU)

• band diagrams, group velocities
perturbation theory, …

• Arbitrary periodic e(x) —
anisotropic, magneto-optic, …
(lossless, linear materials) 

• Arbitrary e(x) — including
   dispersive, loss/gain,
   and nonlinear [c(2) and c(3)] 

• Arbitrary J(x,t)

• PML/periodic/metal bound.

• 1d/2d/3d/cylindrical

• 1d/2d/3d

• fully scriptable interface

• built-in multivariate optimization,
integration, root-finding, …• MPI parallelism

• exploit mirror symmetries

• power spectra    • eigenmodes

• field output (standard HDF5 format)



Unix Philosophy
combine small, well-designed tools, via files

Input text file MPB/Meep standard formats
   (text + HDF5)

Visualization / Analysis
software

(Matlab, Mayavi [vtk],
command-line tools, …)

Disadvantage:
— have to learn several programs

Advantages:
— flexibility
— batch processing, shell scripting
— ease of development



Unix Philosophy
combine small, well-designed tools, via files

Input text file MPB/Meep standard formats
   (text + HDF5)

Visualization / Analysis
software

(Matlab, Mayavi [vtk],
command-line tools, …)

GNU Guile scripting interpreter
(Scheme language)

Embed a full scripting language:
— parameter sweeps
— complex parameterized geometries
— optimization, integration, etc.
— programmable J(x, t), etc.
— … Turing complete 



A Simple Example (MPB)

e = 12

e = 1

a

find the normal modes wn(k) 
of the waveguide:

x

† 

H(y, t) = H k (y)ei(kx-wt )

y

Need to specify:
  • computational cell size/resolution
  • geometry, i.e. e(y)
  • what k values
  • how many modes (n = 1, 2, … ?)



A File Format Made of Parentheses

e = 12

e = 1

a

x
y

Need to specify:
  • computational cell size/resolution
(set! geometry-lattice (make lattice (size no-size 10 no-size)
(set! resolution 32)

  • geometry, i.e. e(y)
  • what k values
  • how many modes (n = 1, 2, … ?)

10 (320 pixels)

1 pixel



A File Format Made of Parentheses

e = 12

e = 1

a

x
y

Need to specify:
  • computational cell size/resolution
  • geometry, i.e. e(y)
(set! geometry
  (list
   (make block (size infinity 1 infinity)
               (center 0 0 0)
               (material (make dielectric (epsilon 12))))))
  • what k values
  • how many modes (n = 1, 2, … ?)

(choose units of a)



A File Format Made of Parentheses

e = 12

e = 1

a

x
y

Need to specify:
  • computational cell size/resolution
  • geometry, i.e. e(y)
  • what k values
(set! k-points
  (interpolate 10 (list (vector3 0 0 0) (vector3 2 0 0))))

  • how many modes (n = 1, 2, … ?)

(units of 2π/a)

(built-in function)



A File Format Made of Parentheses

e = 12

e = 1

a

x
y

Need to specify:
  • computational cell size/resolution
  • geometry, i.e. e(y)
  • what k values
  • how many modes (n = 1, 2, … ?) 
(set! num-bands 5)

…Then run:
(run)

or only TM polarization:
(run-tm)

or only TM, even modes:
(run-tm-yeven)



Simple Example (MPB) Results

e = 12

e = 1

a

find the normal modes wn(k) 
of the waveguide:

x
y

red = even
blue = odd



Do try this at home

Bloch-mode eigensolver:
 http://ab-initio.mit.edu/mpb/

Filter-diagonalization:
 http://ab-initio.mit.edu/harminv/

Photonic-crystal tutorials (+ THIS TALK):
 http://ab-initio.mit.edu/

/photons/tutorial/

FDTD simulation:
 http://ab-initio.mit.edu/meep/


