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Introduction to Book Excerpt

The following text is excerpted from the upcoming second edition of the book
Photonic Crystals: Molding the Flow of Light (Princeton University Press), sched-
uled for publication in 2007. In particular, although the book is mainly focused
on the general principles of photonic crystals and related devices, it includes a
survey of computational methods in the form of an appendix, which we repro-
duce below.

Computational Photonics

In chapters ?? and ??, we presented the equations of classical electromagnetism,
and derived some of the general properties of the solutions based on symmetry
and linear algebra. In the chapters that followed, we relied on a wide array of
numerical solutions of the equations for particular crystals, waveguides, cavi-
ties, and other structures, to illustrate the concepts. Where did these solutions
come from? Band diagrams, transmission spectra, field patterns, and other re-
sults do not just spring forth from the equations. Considerable effort has gone
into the numerical solution of the Maxwell equations. Although our focus in
this book has been on general principles rather than numerical techniques, this
appendix will serve to draw back the curtain and introduce the reader to the
world of computational photonics.

Even as recently as twenty years ago, it would have been unusual to present
solutions to the Maxwell equations without first describing the computational
method in great detail. Since then, photonics research has undergone the same
profound change that has swept through all areas of science and engineering in
the last half century, catalyzed by the availability of ever more powerful com-
puters. The solution of a system of partial differential equations in a mere three
or four dimensions is now an unremarkable feat. Almost none of the compu-
tations in this book required more than a few hours on a personal computer.
Most required only a few minutes.

The situation in photonics is especially favorable for computation because
the Maxwell equations are practically exact, the relevant material properties
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are well known, and the length scales are not too small. Therefore, an excit-
ing aspect of this field is that quantitative theoretical predictions can be made
ab initio (from first principles), without any questionable assumptions or sim-
plifications. The results of such computations have consistently agreed with
experiments. This makes it possible and preferable to optimize the design of
photonic crystals on a computer, and then manufacture them. The computer
becomes the pre-laboratory.

Many standard numerical techniques for the solution of partial differential
equations have been applied to electromagnetism, and each has its own partic-
ular strengths and weaknesses. High-quality “black-box” software is widely
available, including free, open-source programs (some of which are described
at the end of this appendix). Indeed, computational photonics has matured so
much that many practitioners have stopped worrying about the finer details of
the numerics, and are familiar only with the general principles and capabilities
of the different tools. Here, we will summarize some of the most important
methods, and work through a specific example of a band-structure calculation
in more detail.

Generalities

Broadly speaking, there are three categories of problems in computational pho-
tonics:

• Frequency-domain eigensolvers: find the band structure ω(k) and the
associated fields, by expressing the problem as a finite matrix eigenprob-
lem Ax = ω2Bx and applying linear-algebra techniques to find a few of
the eigenvectors x and eigenvalues ω2.1

• Frequency-domain solvers: given a current distribution J(x)e−iωt at a
fixed frequency ω, find the resulting fields by expressing the problem as
a finite matrix equation Ax = b and applying linear-algebra techniques
to solve for x.

• Time-domain simulations: simulate the fields E(x, t) and H(x, t) propa-
gating in time, usually starting with some time-dependent current source
J(x, t).

Although most of this book has focused on the band structures and eigenfields,
the other two problems are also important. For example, one often desires the
transmission or reflection spectrum from a finite structure. This cannot be easily
obtained from the band diagram, but at the same time, knowledge of the gaps
and eigenmodes is crucial for the meaningful interpretation of such spectra (as
we saw in chapter ??). There is, of course, some overlap between the problems;

1Instead of looking for eigenvalues ω2 at a fixed k, it is possible to formulate the eigenproblem
at a fixed ω for the wave vector k at along a single periodic (or uniform) direction as a generalized
Hermitian eigenproblem with eigenvalue k (Johnson et al., 2001; Johnson et al., 2002).



for example, time-domain simulations can be used to compute band structures,
as we will see later in this appendix. When implemented properly, all of the
problems listed above require a computational effort that scales roughly lin-
early with the size of the system (as opposed to quadratically or worse). This
makes computational photonics tractable with relatively modest resources.

Another way to categorize numerical methods for partial differential equa-
tions is by the method that is used to reduce the infinite number of unknowns
(e.g., the fields at every point in space) to a finite number (N) of discretized
unknowns. Four important classes of discretization schemes are:

• Finite differences: represent unknown functions f (x) by their values
fn ≈ f (n∆x) at discrete points on a grid, and derivatives by differences
on the grid. The most straightforward case is a uniform Cartesian grid,
e.g. d f /dx ≈ ( fn+1 − fn−1)/2∆x.

• Finite elements: divide space into a set of finite geometric elements (e.g.,
irregular triangles or tetrahedra), and represent unknown functions by
simple approximations defined on each element (typically, low-degree
polynomials). In a sense, this method is a generalization of finite differ-
ences.

• Spectral methods: represent unknown functions as a series expansion in
a complete basis set of smooth functions, truncating the series to have a
finite number of terms. Archetypically, a Fourier series is used; this is
also called a planewave method in two or three dimensions (where the
terms in the Fourier series are plane waves). More generally, when the
boundary conditions are not periodic, it can be advantageous to employ
other basis functions such as Chebyshev polynomials. One can also use
spectral elements, which are similar to finite elements but use a more
complicated spectral basis for each element.

• Boundary-element methods: instead of discretizing all space, discretize
only the boundaries between homogeneous regions. The homogeneous re-
gions are treated analytically. The discretization can use a finite-element
or a spectral basis. A multipole method (Yasumoto, 2005) is essentially
a boundary-element method with a specialized spectral basis for cylin-
drical or spherical boundaries (not to be confused with the fast multi-
pole method, an algorithm to quickly evaluate matrix-vector products
for boundary-element methods). A related idea can be found in transfer-
matrix or coupled-wave methods, which propagate light in a given direc-
tion by breaking space into a sequence of uniform regions, and deriving
a scattering matrix that relates the values of the fields at each transition.

Of these, the simplest methods to implement and analyze are those that op-
erate on a uniform grid: finite difference methods and the spectral method with
a planewave basis. Finite and spectral elements offer the ability to use different
spatial resolutions in different regions via an unstructured grid. This can be a



huge advantage for problems with complex geometries and a mixture of very
different length scales, such as metallo-dielectric systems (in which micrometer
wavelengths can have nanometer skin depths). On the other hand, this flexibil-
ity comes at a price in complexity. Simpler methods may well be more efficient
in dielectric systems where the index contrast (and thus the length-scale con-
trast) is not too great. Some authors tout spectral methods for their extraordi-
nary accuracy: in principle, the error decreases exponentially with the number of
spectral basis functions. However, that only occurs if all of the discontinuities
are accounted for analytically in the basis (or elements), and this is rare for di-
electric structures because discontinuities occur at every interface. Boundary-
element methods are in a class of their own, and have powerful advantages
when one has small surfaces in a large volume. For example, to compute the
scattered fields from an object, the infinite amount of empty space surround-
ing the object is treated analytically, and need not be discretized or truncated in
any way. Open problems remain, however, in formulating boundary-element
methods in some cases with surfaces that extend to infinity (for example, to
treat a waveguide bend), and their advantages over finite-element methods in
photonic crystals with many surfaces remain debatable.

Once we choose a set of basis functions to represent the discretized un-
knowns, we must transform the partial differential (or integral) equation into
a set of algebraic equations. Aside from finite differences, the most common
way to form these algebraic equations is known by several names: weighed
residual methods, Petrov-Galerkin methods, or the method of moments, with
Galerkin and collocation methods as special cases. Although we will not be
concerned with the details here, the general idea is simple and worth reviewing
(see, e.g., Boyd, 2001). Suppose we are solving a linear equation L̂ f (x) = g(x),
with a differential (or integral) operator L̂, for an unknown function f (x) that
we have expanded in a basis of N functions bn(x) (e.g. finite elements or a spec-
tral basis). That is, we write f (x) = ∑n cnbn(x) for some unknown expansion
coefficients cn. To get a set of linear algebraic equations for the cn, we simply
take the inner-product of both sides of the equation with some N weight func-
tions wm(x). This leads to: ∑n(wm, L̂bn)cn = (wm, g), which is in the form of
an N × N matrix equation Ax = b that can be solved for the cn. The choice
wm = bm gives a Galerkin method, which corresponds to solving L̂ f = g up
to an error L̂ f − g (the residual) that is required to be orthogonal to the basis
functions bn. The choice wm(x) = δ(x − xm), for a set of N points xm, gives a
collocation method, which corresponds to requiring that our equation L̂ f = g be
satisfied exactly at the N collocation points xm.

We should also alert the reader to a class of computational methods that
should be avoided except in special circumstances: any methods that are re-
stricted to low index contrasts, which are not appropriate for general photonic-
crystal structures. Such methods include scalar and semi-vectorial approxima-
tions, as well as techniques such as the beam-propagation method (BPM) that
are restricted to structures which are slowly varying in at least one direction.



Frequency-domain Eigensolvers

A frequency-domain eigensolver solves the Maxwell eigenproblem for the fre-
quencies of a periodic system (or non-periodic, as described below), as given
by equation (??) of chapter ??:

[

(ik +∇) ×
1

ε(r)
(ik + ∇)×

]

uk(r) = Θ̂kuk(r) =
ω(k)2

c2
uk(r), (1)

where uk(r) is the periodic Bloch envelope of the magnetic field Hk = eik·ruk(r).
Since uk(r) is periodic, the computation only needs to consider the finite unit
cell of the structure. In addition to the eigenequation, uk(r) must satisfy the
transversality constraint:

(ik +∇) · uk = 0 (2)

The solution to equation (1) as a function of k yields the band structure of the
system, a result whose utility we have exploited for most of this book.

On a computer, this eigenequation must be discretized into N degrees of
freedom using one of the methods mentioned above, such as the planewave
expansion (as will be described in more detail later). In general, such a dis-
cretization yields a finite generalized eigenproblem Ax = ω2Bx, where A and
B are N × N matrices and x is the eigenvector. Since the original eigenproblem
is Hermitian, the discretization can be chosen so that A and B are Hermitian
and B is positive-definite,2 which are important properties for the numerical
methods below. One difficulty is the transversality constraint, which we must
somehow impose in addition to the eigenequation. Technically, solutions that
violate the transversality constraint form “spurious modes” existing at ω = 0.3

The simplest way to impose transversality is to choose a basis that is automat-
ically transverse, such as the planewave basis described below.

Given such a finite eigenproblem, there are two ways to proceed. One is to
use a standard linear-algebra package such as LAPACK (Anderson et al., 1999)
to find the eigenvectors x and the eigenvalues ω2. Unfortunately, this requires
computation memory proportional to N2 and time proportional to N3. Since
N may be in the millions for large three-dimensional systems, this method is
problematic. Instead, we can exploit the fact that only a few of the eigenvalues
are really needed. For example, to compute the band diagrams in this book,
we only needed the smallest few eigenvalues ωn(k) at each k.

This realization leads to iterative methods, which compute a small num-
ber p of the eigenvalues and eigenvectors, such as the p smallest eigenvalues.
There are many such methods (Bai et al., 2000), but they share a few critical
features. First, they work by taking a starting guess for x (e.g., random num-
bers) and applying some process to iteratively improve the guess, converging

2For example, these properties are always preserved by a Galerkin discretization, which uses

matrix elements Amn = (bm, Θ̂kbn) and Bmn = (bm, bn), given basis functions bn(x).
3This fact can be derived by taking the divergence of both sides of the eigenequation. Since

the divergence of the curl is zero, one is left with an expression ω2(ik + ∇) · uk = 0. That is, the
eigenequation itself implies that transversality is satisfied if ω 6= 0.



quickly to the true eigenvector. In this way, any desired accuracy can be ob-
tained in a small number of steps. Second, they only require you to supply a
fast way to compute the matrix-vector products Ax and Bx. In finite-element
methods, these matrices are sparse (mostly zeros) and Ax or Bx can be com-
puted in O(N) operations, while for spectral methods other fast algorithms are
available as described below. Because of this, A and B need never be stored
explicitly, and only O(N p) storage is required (for the eigenvectors). Third,
given an O(N) matrix-vector product, the computation time grows as O(N p2)
multiplied by the number of iterations; for p ≪ N, this process is usually much
quicker than the O(N3) explicit solution.

A simple example of such an iterative method can be constructed from the
variational theorem that we proved in the section “??” of chapter ??. We proved
the variational theorem for the Maxwell eigenproblem, but the same is true
of any Hermitian eigenproblem, and in particular for our finite eigenproblem
Ax = ω2Bx. That is, the smallest eigenvalue ω2

0 satisfies:

ω2
0 = min

x

x† Ax

x†Bx
, (3)

where x† denotes the conjugate-transpose (adjoint) of the column vector x. This
is known as Rayleigh-quotient minimization, with x0 at the minimum being the
eigenvector. We can perform this minimization using any one of the myriad
numerical techniques for optimizing a function of several variables, such as a
preconditioned nonlinear conjugate-gradient method (Bai et al., 2000). With
the planewave method described below, convergence in 10–30 steps is typical.
Then, to find the next eigenvalue ω1, we simply minimize the same Rayleigh
quotient but constrain x by the orthogonality relation (which follows for any
Hermitian eigenproblem as in chapter ??): x†Bx0 = 0. This process continues
for ω2, ω3, and so on.

This suffices for periodic structures, but what about non-periodic struc-
tures, such as line or point defects in photonic crystals? The simplest case to
handle is that of localized modes, such as the waveguide and cavity modes
trapped around line and point defects, respectively. In this case, we can use
a supercell approximation: periodic boundary conditions, but with a large
computational cell surrounding the localized mode so that the boundaries are
irrelevant. That is, we imagine a cavity or waveguide structure that is period-
ically repeated at large intervals in space. Because the modes of interest are
exponentially localized to the defect (or defects), the solution converges expo-
nentially fast to the desired isolated-defect solution as the size of the compu-
tational cell increases. (In a photonic crystal with a large gap, the boundaries
typically become irrelevant after only a few extra periods of bulk crystal are in-
cluded around the defect.) The k vector along a supercell direction determines
the phase relation between these artificially repeated structures, and this phase
relation also becomes irrelevant exponentially fast as the cell size increases.

For non-exponentially localized modes in non-periodic structures, such as
the “leaky” cavity modes of chapters ?? and ??, matters are more complicated.



Typically, one imposes some absorbing boundary conditions or regions (such
as the perfectly matched layers described below). The problem becomes non-
Hermitian (allowing complex ω to account for radiation losses), leading to
more complicated numerical methods.

Frequency-domain Solvers

Although band structures and eigenstates are useful, they are not the only
quantities of interest in photonic devices. For example, we often want to know
the transmission and reflection through a finite structure from a given source at
a given frequency. Additionally, the response of a structure to currents placed
at various points can reveal a host of interesting phenomena, from the enhance-
ment (or suppression) of spontaneous emission to scattering losses from sur-
face roughness.4

Here, the classic problem is to find the fields E(r)e−iωt (and also H =

− i
ωµ0

∇ × E) that are generated in response to some constant-frequency cur-

rent source J(r)e−iωt in linear media. By solving the Maxwell equations for E
in terms of J, we obtain the following linear equation:

[

(∇×∇×) −
ω2

c2
ε(r)

]

E(r) = iωµ0J(r). (4)

When this equation is discretized into N unknowns, one obtains an N × N
matrix equation of the form Ax = b for the unknown “fields” (column vector)
x in terms of the known “currents” b. Although solving such a set of equa-
tions directly would require O(N2) storage and O(N3) time, iterative methods
are available, as for the eigenproblem above, that require O(N) storage and
roughly O(N) time (see, e.g., Barrett et al., 1994), given a fast way to compute
the matrix-vector product Ax.

Transmission and scattering calculations, however, typically require “open”
boundaries. This means that the scattered fields must radiate to infinity instead
of reflecting when they hit the edge of the (finite) computational region. Ex-
cept for boundary-element methods, in which open boundaries are automatic,
this problem is typically handled by adding a perfectly matched layer (PML)
around the edges of the computational region. A PML is an artificial absorbing
material designed so that there are (theoretically) no reflections from the edge
of the material.5

In our analysis of the Maxwell eigenproblem, the Hermitian property of
the eigenoperator played a central role. The analogous role for the frequency-
domain problem (4) is occupied by a closely related property known as Lorentz
reciprocity.6 In particular, if Ξ̂ is the linear operator on the left-hand side of

4See, for example, Fan et al. (1997) and Johnson et al. (2005).
5PML was initially designed for time-domain methods (see, e.g., Taflove and Hagness, 2000;

Chew et al., 2001), but in frequency domain the same idea applies (and, in fact, is even simpler
because only a single frequency ω need be handled).

6See, for example, Landau et al. (1984, §69) and Potton (2004).



equation (4), then reciprocity tells us that (E1, Ξ̂E2) = (Ξ̂E1, E2) for the uncon-
jugated inner product (F, G) =

∫

F · G. Therefore, (E1, J2) = (J1, E2). This
theorem holds even for complex-valued ε (e.g. for PML absorbing boundaries),
unlike the Hermitian property.7

Time-domain Simulations

Arguably the most general numerical methods for electromagnetism are those
that simulate the full time-dependent Maxwell equations, propagating the fields
in both space and time. Such time-domain methods can easily support strongly
nonlinear or active (time-varying) media. Frequency-domain methods have
more difficulty with those cases because frequency is no longer conserved.
Time-domain methods can also be used solve the frequency-domain problems
above, with some advantages and disadvantages as described below.

By far the most common technique for time-domain simulations is the finite-
difference time-domain method, or FDTD. As the name implies, FDTD di-
vides space and time into a grid (usually uniform) of discrete points and ap-
proximates the derivatives (∇× and ∂/∂t) of the Maxwell equations by finite
differences. The propagation in time, in particular, uses a “leap-frog” scheme
where the E fields at time t are computed from the E fields at time t − ∆t along
with the H fields at time t − ∆t/2, and vice versa for H at t + ∆t/2. In this way,
the E and H field patterns are marched through time, offset by half of a time
step ∆t. The details of such methods, which employ a special staggered “Yee”
grid in which the different components of each vector are associated with dif-
ferent locations on the grid cell, are well described in textbooks such as Taflove
and Hagness (2000). Because FDTD software is widely available, it is more
important to know how it is used and how it compares to frequency-domain
methods.

The FDTD method is commonly employed to compute transmission and
reflection spectra, much like the frequency-domain solvers of the previous
section. Unlike a frequency-domain solver, however, time-domain methods
can compute the response of a linear system at many frequencies with a sin-
gle computation. The trick is to take the Fourier transform of the response to
a short pulse. For example, suppose you want to know the transmitted flux
Re

∫

E∗ × H/2 through a filter structure like those of chapter ??, as a function
of frequency. You use an FDTD code to send a short pulse (which has a broad
bandwidth) into the structure, and observe the resulting fields E(t) and H(t)
at the output plane. These are Fourier-transformed to yield E(ω) and H(ω),
from which the flux is obtained at each ω. As for frequency-domain methods
above, PML absorbing layers are used to simulate open boundaries.

7Technically, we require that ε and µ be symmetric 3 × 3 matrices, which is almost always true
except in magneto-optic materials (see footnote ?? on page ??). More generally, one can also for-
mulate a reciprocity relation for integrals over finite volumes by including an appropriate surface
term. The unconjugated inner product, here, not only allows us to use complex ε, but also turns
out to be essential in order to make this surface term vanish for an integral over all space.



Why, then, would anyone ever use a frequency-domain solver? There are
several reasons. First, because of the uncertainty principle of the Fourier trans-
form, a time-domain method requires a long time to resolve a sharp spec-
tral feature. Second, if you are interested in the steady-state response to a
time-harmonic current source J(x)e−iωt, then with a time-domain method you
must smoothly “turn on” the current and wait a long time for transient ef-
fects to die away. A frequency-domain method may be more efficient. Third,
frequency-domain methods allow one to exploit finite-element or boundary-
element methods that more efficiently discretize the problem, especially in
cases for which highly non-uniform resolution is beneficial. (Moreover, if high
spatial resolution is required, then FDTD methods require high temporal reso-
lution as well, in order to maintain numerical stability. Thus, the time for a 3d
FDTD simulation scales as resolution to the fourth power instead of to the third
power as you might expect.) Although finite-element methods may be used
for time-domain simulations too, they typically require implicit time-stepping in
order to remain stable, which means that an N × N matrix equation must be
solved at every time step. Boundary-element methods are even more compli-
cated to implement in the time domain, because different points on surfaces
are related by “retarded” Green’s functions that are non-local in time.

Similarly, FDTD and other time-domain methods can be used to extract
frequency eigenvalues. A time-domain eigensolver works by looking at the re-
sponse of a structure to a short pulse. The eigenfrequencies are then identified
as the peaks in the spectrum of the response. This method can even be used
to identify resonant or leaky modes, because the width of the peak is related
to the loss rate. In practice, one does not simply look for peaks in the Fourier
transform; there are sophisticated signal-processing techniques that are even
more accurate than the Fourier uncertainty principle would seem to imply
(Mandelshtam and Taylor, 1997). Band structures are computed by imposing
Bloch-periodic boundary conditions. Advantages of this technique are that one
learns many eigenfrequencies at once, one can easily hunt for the eigenfrequen-
cies in a specific portion of the spectrum (e.g., inside the gap, for a defect-mode
calculation), and one can determine loss rates just as easily as frequencies. One
disadvantage is that resolving degenerate or near-degenerate modes may take
a long time, especially if the field patterns are desired in addition to the fre-
quencies. (Obtaining the eigenfield pattern corresponding to a given eigenfre-
quency requires a separate simulation with a narrow-bandwidth source.) And
unfortunately, the signal processing techniques involved in peak identification
offer few guarantees. It is possible to miss eigenfrequencies, or locate spurious
ones. Frequency-domain eigensolvers are more straightforward. They are es-
sentially bulletproof, and are often faster at computing a few eigenfrequencies
(especially at high resolutions).



A Planewave Eigensolver

In this book, the single most common type of computation we have performed
is that of the band structure and eigenmodes. Therefore, it makes sense to
explain our computational method for this frequency-domain eigenproblem in
more detail. For a more thorough discussion of this scheme, which we have
employed in our research for many years and have successfully compared to
experimental results, see Meade et al. (1993) and Johnson and Joannopoulos
(2001).

We employ a spectral method with a planewave basis. To see how that
works, we begin in one dimension where it corresponds to the familiar Fourier
series. In particular, we are solving (1) for a periodic function uk(x) = uk(x +
a) with period a. It is a remarkable fact, first postulated by Joseph Fourier at
the beginning of the 19th century (amid some controversy), that any reasonable
periodic function can be represented by an infinite sum of sines and cosines.8

Or, in terms of complex exponentials,

uk(x) =
∞

∑
n=−∞

cn(k)ei 2πn
a x, (5)

for complex Fourier-series coefficients cn(k) = 1
a

∫ a
0 e−i 2πn

a xuk(x). Note that
each term in the sum is a periodic function with period a. To use this repre-
sentation on a computer, we need to truncate the sum to have a finite number
(N) of terms. This is feasible because the coefficients cn are decaying with |n|.9

Thus, we use the N lowest-|n| terms (say, −N/2 to N/2 − 1). We have trans-
formed the problem from finding uk(x) to solving a set of linear equations for
the N unknowns cn. We will show how to write down these equations after
first returning to the full vectorial problem.

We can generalize the Fourier series to several dimensions by recognizing
that the 2πn/a in the complex exponential is none other than a reciprocal lat-
tice vector of the one-dimensional lattice with period a. By analogy, the multi-
dimensional Fourier series is

uk(r) = ∑
G

cG(k)eiG·r, (6)

where the sum is over all of the reciprocal lattice vectors G (see appendix ??),

and cG = 1
V

∫

e−iG·ruk(r) where V is the unit-cell volume. By construction,
each term in the sum is periodic in r with respect to the lattice vectors R, since
G · R is a multiple of 2π by definition. Note that, since uk is a vector field, our
Fourier-series coefficients cG are now vectors as well. If we apply the transver-
sality constraint (2) to equation (6), we obtain a simple constraint on the coeffi-
cients:

(k + G) · cG = 0. (7)

8A more rigorous statement, historical background, and pathological exceptions to this rule can
be found in, e.g., Körner (1988).

9The rate of convergence depends on the smoothness of uk(x); if uk(x) is ℓ-times differentiable,

then |cn| decreases faster than 1/|n|ℓ (Katznelson, 1968).



We see that transversality is automatically obeyed if we build the field H =
ukeik·r out of plane waves that are themselves transverse. Therefore, for each

G we choose two perpendicular unit vectors ê
(1)
G and ê

(2)
G orthogonal to k + G,

and write cG = c
(1)
G ê

(1)
G + c

(2)
G ê

(2)
G . We have thus reduced the problem to two

unknowns c
(1)
G and c

(2)
G per G, and we need not worry about transversality any

more.
Given the transverse Fourier-series representation (6), we now derive a

set of equations to determine the coefficients cG by substituting (6) into the
eigenequation (1). By Fourier transforming both sides of equation (1) (i.e., in-

tegrating with
∫

e−iG′·r), we obtain equations:

∑
G

[

−ε−1
G′−G

· (k + G′)× (k + G)×
]

cG =
ω2

c2
cG′ (8)

in terms of the Fourier transform (series coefficients) ε−1
G of ε−1(r).

Equation (??) is an infinite set of linear equations for the infinite set of un-
knowns represented by cG. There are two related methods for truncating this
infinite set of equations. First, we can simply take equation (??) for a finite set
of plane waves G (e.g., a sphere around the origin), and throw out terms cor-
responding to larger |G| values on the assumption that they are small. This

would involve computing the exact Fourier transform ε−1
G of the inverse di-

electric function, which might require many expensive numerical integrations.
However, since we are going to throw out large G components anyway, we

might as well go one step further and approximate ε−1
G using the discrete

Fourier transform (DFT). The DFT essentially replaces the Fourier transform
by a discrete sum.10

Once we have truncated to a finite set of G values, equation (??) is a finite
matrix eigenequation of the form Ax = ω2x, where x is the column-vector

of our unknown c
(ℓ)
G ’s and A is the matrix of the coefficients on the left-hand

side.11 Viewed in this way, we have a problem: because the coefficients ε−1
G′−G

are generally non-zero for all G′ and G, our matrix A is dense (mostly non-
zero), and multiplying Ax takes O(N2) time. This is a death-knell for iterative
methods, which require the multiplication Ax to be very rapid.

The saving grace for the planewave method is the existence of fast Fourier
transform (FFT) algorithms, which can compute the multidimensional DFT
over N points in O(N log N) time.12 This means we can multiply cG by the
operator on the left-hand side of equation (??) via a three-step process. First,
we take the cross-product (k + G) × cG, which takes O(N) time. Then, we

10Technically, the difference here between computing the Fourier transform exactly and via the
DFT is the difference between a Galerkin method and a collocation method, where the latter means
that we are enforcing the eigenequation at a set of discrete points (Boyd, 2001).

11The reason why we don’t get a generalized eigenproblem Ax = ω2Bx, or rather why B here is
the identity, is that the planewave basis functions are orthogonal to one another.

12See, for example, Brigham (1988).



compute the (inverse) FFT to transform into position (r) space, where we can
multiply by ε−1(r) in O(N) time. Finally, we FFT back to G coordinates to
perform the final cross-product (k + G′)×. In all, this process takes O(N log N)
time and requires O(N) storage, which is fast enough for iterative methods to
be efficient.13

We should also mention another important technical advantage of the plane-
wave representation for iterative eigensolvers, having to do with efficient pre-
conditioners. A preconditioner, in an iterative method, is essentially an ap-
proximate solution to the equation that is used to accelerate each step of the
iteration. A good preconditioner can speed up the solution by orders of mag-
nitude, from thousands of iterations to tens, but the development of such a
preconditioner is a difficult and problem-dependent task. For the planewave
method, however, efficient preconditioning is simple: one can precondition by
considering only the diagonal entries of A, which are just |k + G|2, since these
entries dominate the problem for large |G|.14

The accuracy of the planewave method is determined by the rate of con-
vergence of the cG Fourier coefficients, since our errors are determined by the
size of the large-|G| coefficients that we discarded. Unfortunately, for discon-
tinuous dielectric structures, the corresponding Fourier transform converges
rather slowly (the Fourier coefficients of ε−1 decrease proportional to 1/|G|),
which leads to problems noted by Sözüer et al. (1992). (Related problems
arise in finite-difference methods, where they are known as “staircasing” of
dielectric interfaces.) Fortunately, these difficulties can be greatly reduced by
a properly designed interpolation scheme, which smooths out the sharp di-
electric interfaces without itself adding new errors to the frequency (Meade
et al., 1993; Johnson and Joannopoulos, 2001). Similar benefits from smoothing
accrue in other methods such as FDTD, and the underlying principle guid-
ing the choice of interpolation scheme derives from the perturbation theory of
chapter ?? (Farjadpour et al., 2006).

Further Reading and Free Software

A review of iterative planewave eigensolver methods for photonic crystals can
be found in Johnson and Joannopoulos (2001), and a good reference on the
finite-difference time-domain (FDTD) method is Taflove and Hagness (2000).
An overview of finite-element and boundary-element methods in electromag-
netism can be found in Chew et al. (2001), and several other methods are de-
scribed in Yasumoto (2005). For a general (not specifically electromagnetic)
introduction to: spectral methods, see e.g. Boyd (2001); boundary-element
methods, see e.g. Bonnet (1999); finite-difference methods, see e.g. Strikwerda

13Put another way, we are taking advantage of the fact that equation (??) is in the form of a
discrete convolution, which can be evaluated in O(N log N) operations by a pair of FFTs using the
convolution theorem (DFTs turn convolutions into pointwise products).

14This is motivated by “kinetic-energy” preconditioners from quantum mechanics (Payne et al.,
1992; Johnson and Joannopoulos, 2001). Other strategies to find preconditioners are described in
Barrett et al. (1994).



(1989). Broad surveys of iterative methods for linear equations and eigenprob-
lems can be found in Barrett et al. (1994) and Bai et al. (2000), respectively.

Numerous commercial software products are available for electromagnetic
problems and can easily be found in the usual catalogs. In the course of our
own research, we have become strong proponents of free software (a.k.a. open-
source code), which has many advantages. Besides having low cost, it is also
portable, customizable, and vendor-independent. In particular, we have de-
veloped and released a free program called MPB (ab-initio.mit.edu/mpb) for
computing band structures and eigenmodes by a planewave method, and a
program called Meep (ab-initio.mit.edu/meep) that implements the FDTD method.
These two programs performed all the calculations in this book. Another free
program that we have found useful is CAMFR (camfr.sourceforge.net) by Bienstman
(2001), which is a transfer-matrix frequency-domain solver variant that is espe-
cially efficient for structures that can be subdivided into a sequence of uniform
cross-sections along a given direction.
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