Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT

(not to scale)

The Glass Ceiling: Limits of Silica

Loss: amplifiers every 50–100km

...limited by Rayleigh scattering (molecular entropy) ...cannot use "exotic" wavelengths like 10.6µm

Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits (limited by mode area ~ single-mode, bending loss) also cannot be made (very) **large** for compact nonlinear devices

Radical modifications to dispersion, polarization effects? ...tunability is limited by low index contrast

Breaking the Glass Ceiling: Hollow-core Bandgap Fibers

Breaking the Glass Ceiling: Hollow-core Bandgap Fibers

Breaking the Glass Ceiling: Hollow-core Bandgap Fibers

[R. F. Cregan *et al.*, *Science* **285**, 1537 (1999)]

[figs courtesy

Y. Fink et al., MIT]

Guiding @ 1.55µm loss ~ 13dB/km

[Smith, *et al.*, *Nature* **424**, 657 (2003)]

OFC 2004: 1.7dB/km BlazePhotonics

Breaking the Glass Ceiling II: Solid-core Holey Fibers

Breaking the Glass Ceiling II: Solid-core Holey Fibers

[T. A. Birks *et al.*, *Opt. Lett.* **22**, 961 (1997)]

[Wadsworth *et al.*, *JOSA B* **19**, 2148 (2002)]

polarization
-maintaining

[K. Suzuki, Opt. Express **9**, 676 (2001)]

low-contrast linear fiber (large area)

J. C. Knight et al., Elec. Lett. 34, 1347 (1998)]

Omnidirectional Bragg Mirrors

a 1d crystal can reflect light from all angles and polarizations

[Winn, Fink et al. (1998)]

...it behaves like a metal

(but at any wavelength)

perfect metal

OmniGuide Fibers

[S. G. Johnson et al., Opt. Express 9, 748 (2001)]

Hollow Metal Waveguides, Reborn

metal waveguide modes

OmniGuide fiber gaps

Hollow Metal Waveguides, Reborn

metal waveguide modes

OmniGuide fiber modes

modes are directly analogous to those in hollow metal waveguide

Here, use $R=13\mu m$ for $\lambda=1.55\mu m \dots n=4.6/1.6$ (any omnidirectional is similar)

TE₀₁ vs. PMD

non-degenerate mode, so cannot be split

i.e. immune to birefringence

i.e. PMD is zero

Let's Get Quantitative

...but what about the cladding?

Gas can have low loss & nonlinearity

...*some* field penetrates!

& may need to use very "bad" material to get high index contrast

Let's Get Quantitative

Nonlinearity

= small $\Delta \varepsilon \sim |\mathbf{E}|^2$

Acircularity, bending, roughness, ... = small perturbations

Hard to compute *directly* ... use Perturbation Theory

Perturbation Theory

Given solution for ideal system compute approximate effect of small changes

...solves hard problems starting with easy problems & provides (semi) analytical insight

Perturbation Theory

for Hermitian eigenproblems

given eigenvectors/values: $\hat{O}|u\rangle = u|u\rangle$...find change $\Delta u \& \Delta |u\rangle$ for small $\Delta \hat{O}$

Solution:

expand as power series in $\Delta \hat{O}$

$$\Delta u = 0 + \Delta u^{(1)} + \Delta u^{(2)} + \dots$$
$$\& \Delta |u\rangle = 0 + \Delta |u\rangle^{(1)} + \dots$$
$$\Delta u^{(1)} = \frac{\langle u | \Delta \hat{O} | u \rangle}{\langle u | u \rangle}$$
(first-order is usually enough

Perturbation Theory

for electromagnetism

$$\Delta \omega^{(1)} = \frac{c^2}{2\omega} \frac{\langle \vec{H} | \Delta \hat{\Theta} | \vec{H} \rangle}{\langle \vec{H} | \vec{H} \rangle}$$

= $-\frac{\omega}{2} \frac{\int \Delta \varepsilon |\vec{E}|^2}{\int \varepsilon |\vec{E}|^2}$...e.g. absorption
gives
imaginary $\Delta \omega$
= decay!

$$\Delta \beta^{(1)} = \Delta \omega^{(1)} / v_g \qquad v_g = \frac{d\omega}{d\beta}$$

Suppressing Cladding Losses

Suppressing Cladding Nonlinearity

Absorption & Nonlinearity Scaling

Radiation Leakage Loss (17 layers)

Finite # layers: modes are "leaky"

loss decreases exponentially with number of layers

 $(\sim 1/R^3)$

Acircularity & Bending

main effect is coupling to lossier modes, but can be ~ 0.01 dB/km with enough (~50) layers tricky

Surface Roughness

suppressed like absorption

Acircularity & Perturbation Theory

(or any shifting-boundary problem)

FAILS for high index contrast!

beware field discontinuity... fortunately, a simple correction exists

[S. G. Johnson *et al.*, *PRE* **65**, 066611 (2002)]

Acircularity & Perturbation Theory

(or any shifting-boundary problem)

Yes, but how do you make it?

[figs courtesy Y. Fink et al., MIT]

find compatible materials

(many new possibilities)

chalcogenide glass, n ~ 2.8 + polymer (or oxide), n ~ 1.5

2 Make pre-form ("scale model")

3

fiber drawing

Fiber Draw Tower @ MIT

building 13, constructed 2000-2001

~6 meter (20 feet) research tower

[figs courtesy Y. Fink et al., MIT]

A Drawn Bandgap Fiber

[figs courtesy Y. Fink et al., MIT]

 Photonic crystal structural uniformity, adhesion, physical durability through large temperature excursions

Band Gap Guidance

High-Power Transmission

at $10.6\mu m$ (no previous dielectric waveguide)

Polymer losses @10.6µm ~ 50,000dB/m...

Enough about MIT already...

2d-periodic Photonic-Crystal Fibers

[R. F. Cregan et al., Science 285, 1537 (1999)]

r = 0.1a 2.5_{1} light cone 2 ω (2 $\pi c/a$) 1.5 1 w=Bc 0.5 0.5 1.5 2 2.5 1 3 0 β (2 π/a)

r = 0.17717a

r = 0.22973a

r = 0.30912a

r = 0.34197a

r = 0.37193a

2.5 light cone 2 ω (2 $\pi c/a$) 1.5 1 10 - BC 0.5 0.5 1.5 2 2.5 1 3 0 β (2 π/a)

r = 0.4a

r = 0.42557a

PCF Projected Bands

[J. Broeng et al., Opt. Lett. 25, 96 (2000)]

PCF Guided Mode(s)

[J. Broeng et al., Opt. Lett. 25, 96 (2000)]

Experimental Air-guiding PCF Fabrication (e.g.)

Experimental Air-guiding PCF

[R. F. Cregan et al., Science 285, 1537 (1999)]

Experimental Air-guiding PCF

[R. F. Cregan et al., Science 285, 1537 (1999)]

State-of-the-art air-guiding losses [Mangan, *et al.*, OFC 2004 PDP24]

hollow (air) core (covers 19 holes)

guided field profile: (flux density)

1.7dB/km BlazePhotonics over ~ 800m @1.57µm

State-of-the-art air-guiding losses

13dB/km Corning over ~ 100m @1.5μm [Smith, *et al.*, *Nature* 424, 657 (2003)]

1.7dB/km

BlazePhotonics over ~ 800m @1.57μm [Mangan, *et al.*, *OFC 2004* PDP24]

State-of-the-art air-guiding losses

larger core = more surface states crossing guided mode

13dB/km Corning over ~ 100m @1.5μm [Smith, *et al.*, *Nature* 424, 657 (2003)]

1.7dB/km

BlazePhotonics over ~ 800m @1.57μm [Mangan, *et al.*, *OFC 2004* PDP24]

Index-Guiding PCF & microstructured fiber: Holey Fibers

solid core

holey cladding forms *effective* low-index material

Can have much higher contrast than doped silica...

strong confinement = enhanced
nonlinearities, birefringence, ...

[J. C. Knight et al., Opt. Lett. 21, 1547 (1996)]

(Schematic)

Holey Fiber PMF

(Polarization-Maintaining Fiber)

Can operate in a single polarization, PMD = 0 (also, known polarization at output)

[K. Suzuki, Opt. Express 9, 676 (2001)]

Nonlinear Holey Fibers:

Supercontinuum Generation

(enhanced by strong confinement + unusual dispersion)

e.g. 400–1600nm "white" light: from 850nm ~200 fs pulses (4 nJ)

[W. J. Wadsworth et al., J. Opt. Soc. Am. B 19, 2148 (2002)]

Endlessly Single-Mode [T. A. Birks *et al.*, *Opt. Lett.* 22, 961 (1997)]

at higher ω (smaller λ), the light is more concentrated in silica

...so the effective index contrast is less

...and the fiber can stay single mode for all λ !

Low Contrast Holey Fibers

[J. C. Knight et al., Elec. Lett. 34, 1347 (1998)]

The holes can also form an effective low-contrast medium

i.e. light is only affected slightly by small, widely-spaced holes

This yields large-area, single-mode fibers (low nonlinearities)

... but bending loss is worse

Holey Fiber Losses

Best reported results: 0.28 dB/km @1.55µm

[Tajima, ECOC 2003]

The Upshot

Potential new regimes for fiber operation, even using very poor materials.

The Story of Photonic Crystals Finding Materials -> Finding Structures