Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT

Complete Band Gaps:

You can leave home without them.

How else can we confine light?

Total Internal Reflection

rays at shallow angles > θ_c are totally reflected

 n_o

 $n_i > n_o$

 $\sin \theta_c = n_o / n_i$
< 1, so θ_c is real

i.e. TIR can only guide within higher index unlike a band gap

Total Internal Reflection?

 n_o

 $n_i > n_o$

rays at shallow angles $> \theta_c$ are totally reflected

So, for example, a discontiguous structure can't possibly guide by TIR...

the rays can't stay inside!

Total Internal Reflection?

 n_o

 $n_i > n_o$

rays at shallow angles > θ_c are totally reflected

So, for example, a discontiguous structure can't possibly guide by TIR...

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O<

Total Internal Reflection Redux

 n_o

Waveguide Dispersion Relations *i.e.* projected band diagrams

A Hybrid Photonic Crystal:

1d band gap + index guiding

Meanwhile, back in reality... Air-bridge Resonator: 1d gap + 2d index guiding

Time for Two Dimensions...

2d is all we really need for many interesting devices ...darn *z* direction!

How do we make a 2d bandgap?

Most obvious solution?

make 2d pattern *really* tall

How do we make a 2d bandgap?

If height is finite, we must couple to out-of-plane wavevectors...

 k_z not conserved

A 2d band diagram in 3d

Let's start with the 2d band diagram.

This is what we'd like to have in 3d, too!

A 2d band diagram in 3d

Let's start with the 2d Square Lattice of band diagram. **Dielectric Rods** $(\varepsilon = 12, r=0.2a)$ This is what we'd like 0.6to have in 3d, too! 0.5 No! When we include out-of-plane propagation, frequency (c/a) 0.4 we get: 0.3 wavevector frequency 0.2ω 0.1- $\omega + \delta \omega$

projected band diagram fills gap!

Photonic-Crystal Slabs

2d photonic bandgap + vertical index guiding

[S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice]

Rod-Slab Projected Band Diagram

The Light Cone: All possible states propagating in the air

The Guided Modes: Cannot couple to the light cone... —> confined to the slab

Thickness is critical. Should be about λ/2 (to have a gap & be single-mode)

Μ

Х

Symmetry in a Slab

2d: TM and TE modes

slab: odd (TM-like) and even (TE-like) modes

Like in 2d, there may only be a band gap in one symmetry/polarization

Slab Gaps

Substrates, for the Gravity-Impaired

Extruded Rod Substrate

S. Assefa, L. A. Kolodziejski

Air-membrane Slabs

who needs a substrate?

[N. Carlsson et al., Opt. Quantum Elec. 34, 123 (2002)]

Optimal Slab Thickness

~ $\lambda/2$, but $\lambda/2$ in what material?

effective medium theory: effective ε depends on polarization

Photonic-Crystal Building Blocks

point defects (cavities) line defects (waveguides)

A Reduced-Index Waveguide

We *cannot* completely remove the rods—no vertical confinement!

> Still have conserved wavevector—under the light cone, no radiation

Reduce the radius of a row of rods to "trap" a waveguide mode in the gap.

Reduced-Index Waveguide Modes

Experimental Waveguide & Bend

All Is Not Lost

A simple model device (filters, bends, ...):

worst case: high-Q (narrow-band) cavities

Semi-analytical losses

Monopole Cavity in a Slab

Lower the ε of a single rod: push up a monopole (singlet) state.

Use small $\Delta \epsilon$: delocalized in-plane, & high-Q (we hope)

Delocalized Monopole Q

Super-defects

Weaker defect with more unit cells.

More delocalized at the same point in the gap (*i.e.* at same bulk decay rate)

Super-Defect State

(cross-section)

still ~localized: *In-plane* Q_{\parallel} is > 50,000 for only 4 bulk periods

Hole Slab ε=11.56 period *a*, radius 0.3*a* thickness 0.5*a*

Reduce radius of 7 holes to 0.2*a*

Very robust to roughness (note pixellization, a = 10 pixels).

How do we compute Q?

(via 3d FDTD [finite-difference time-domain] simulation)

excite cavity with dipole source (broad bandwidth, *e.g.* Gaussian pulse)

... monitor field at some point •

...extract frequencies, decay rates via signal processing (FFT is suboptimal)

[V. A. Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

Pro: no *a priori* knowledge, get all ω 's and Q's at once Con: no separate Q_w/Q_r , Q > 500,000 hard, mixed-up field pattern if multiple resonances

How do we compute Q?

(via 3d FDTD [finite-difference time-domain] simulation)

excite cavity with narrow-band dipole source (e.g. temporally broad Gaussian pulse)

— source is at ω_0 resonance, which must already be known (via

...measure outgoing power P and energy U

 $Q = \omega_0 U / P$

Pro: separate Q_w/Q_r , arbitrary Q, also get field pattern Con: requires separate run (1) to get ω_0 , long-time source for closely-spaced resonances Can we increase Q without delocalizing?

Semi-analytical losses

Need a more compact representation

Cannot cancel infinitely many $\mathbf{E}(x)$ integrals

Radiation pattern from localized source...

use multipole expansion
 & cancel largest moment

Multipole Expansion

[Jackson, Classical Electrodynamics]

radiated field =

Each term's strength = single integral over near field ...one term is cancellable by tuning one defect parameter

Multipole Expansion

[Jackson, Classical Electrodynamics]

radiated field =

peak Q (cancellation) = transition to higher-order radiation

as we change the radius, ω sweeps across the gap

cancel a dipole by opposite dipoles...

cancellation comes from opposite-sign fields in adjacent rods

... changing radius changed balance of dipoles

3d multipole cancellation?

quadrupole mode

enlarge center & adjacent rods

vary side-rod ε slightly for continuous tuning (balance central moment with opposite-sign side rods)

3d multipole cancellation

Q = 408

Q = 1925

far field |E|²

near field E_7

nodal planes (source of high Q)

Q = 426

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]

Elongation *p* is a tuning parameter for the cavity...

... in simulations, Q peaks sharply to ~10000 for p = 0.1a

(likely to be a multipole-cancellation effect)

* actually, there are two cavity modes; p breaks degeneracy

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]

Elongation *p* is a tuning parameter for the cavity...

... in simulations, Q peaks sharply to ~10000 for p = 0.1a

(likely to be a multipole-cancellation effect)

* actually, there are two cavity modes; p breaks degeneracy

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]

How can we get *arbitrary* Q with *finite* modal volume?

a full 3d band gap

Now there are two ways.

[M. R. Watts et al., Opt. Lett. 27, 1785 (2002)]

The Basic Idea, in 2d

start with: junction of two waveguides

No radiation at junction if the modes are perfectly matched

Perfect Mode Matching

requires:

same differential equations and boundary conditions

Match differential equations...

 $\mathbf{E}_2 - \mathbf{E}_1 = \mathbf{E}_2' - \mathbf{E}_1'$...closely related to separability [S. Kawakami, J. Lightwave Tech. 20, 1644 (2002)]

Perfect Mode Matching

requires:

same differential equations and boundary conditions

Match boundary conditions: field must be TE (note switch in TE/TM convention) (E out of plane, in 2d)

TE modes in 3d

for

cylindrical waveguides,

"azimuthally polarized"

TE_{0n} modes

A Perfect Cavity in 3d (~ VCSEL + perfect lateral confinement)

Perfect index confinement (no scattering) 1d band gap 3d confinement

A Perfectly Confined Mode

 $\epsilon_{1}^{}, \epsilon_{2}^{} = 9, 6$

 $\epsilon_{1}', \epsilon_{2}' = 4, 1$

E energy density, vertical slice

Q-tips

Three independent mechanisms for high Q:

Delocalization: trade off modal size for Q

 Q_r grows monotonically towards band edge

Multipole Cancellation: force higher-order far-field pattern Q_r peaks inside gap

New nodal planes appear in far-field pattern at peak

Mode Matching: allows arbitrary Q, finite V

Requires special symmetry & materials

Forget these devices...

I just want a mirror.

ok

Projected Bands of a 1d Crystal

(a.k.a. a Bragg mirror)

Omnidirectional Reflection

[J. N. Winn et al, Opt. Lett. 23, 1573 (1998)]

Omnidirectional Mirrors in Practice

[Y. Fink et al, Science 282, 1679 (1998)]

