Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT

Those Clever Experimentalists

Fabrication of Three-Dimensional Crystals

The Mother of (almost) All Bandgaps

The diamond lattice:

fcc (face-centered-cubic) with two "atoms" per unit cell (primitive)

Recipe for a complete gap:

fcc = most-spherical Brillouin zone

+ diamond "bonds" = lowest (two) bands can concentrate in lines

The First 3d Bandgap Structure

K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

MPB tutorial, http://ab-initio.mit.edu/mpb

Make that? Are you crazy? ...maybe!

fabrication schematic

carefully stack bcc silica & latex spheres via micromanipulation

[F. Garcia-Santamaria *et al.*, *APL* **79**, 2309 (2001)] http://www.icmm.csic.es/cefe/Fab/Robot/robot strategy.htm

Make that? Are you crazy? ...maybe!

[F. Garcia-Santamaria et al., Adv. Mater. 14 (16), 1144 (2002).]

6-layer [001] silica diamond lattice

4-layer [111] silica diamond lattice

Fortunately, there are easier ways.

Layer-by-Layer Lithography

• Fabrication of 2d patterns in Si or GaAs is very advanced (think: Pentium IV, 50 million transistors)

...inter-layer alignment techniques are only slightly more exotic

So, make 3d structure one layer at a time

Need a 3d crystal with constant cross-section layers

A Layered Structure We've Seen Already

side view

substrate Si

top view

expose/etch holes

backfill with silica (SiO₂) & polish

deposit another Si layer

dig more holes offset & overlapping

backfill

etcetera

(dissolve silica when done)

A More Realistic Schematic

[M. Qi, H. Smith, MIT]

e-beam Fabrication: Top View

500 nm

[M. Qi, H. Smith, MIT]

e-beam Fabrication: Side Views

(cleaving worst sample)

Cross-sectional View

(a) SEM micrograph

А

А

А

C

C

A

Α

А

C

C

С

C

В

B

B

А

А

А

(b) Schematic [M. Qi, H. Smith, MIT]

Adding "Defect" Microcavities

Easiest defect: don't etch some B holes

- non-periodically distributed: suppresses sub-band structure
- low Q = easier to detect from planewave

Supercontinuum-Source vs. Theoretical **Transmission Spectra** 100 80 % Transmission 60 **Measurement** Simulation 40 (without defect) 20 Simulation (with defects) 0 1.2 1.6 1.4 1.8 2 2.2 2.4 Wavelength (μ m) [M. Qi, H. Smith, MIT]

Supercontiuum vs. Theory: Reflection

Future Work: X-ray Interference Lithography

The Good

Large area: up to 10x10cm! Cheap (\$50k vs. \$500k for e-beam) Nearly perfect periodicity High resolution The Ugly

Layer alignment still tricky

no defects: use e-beam locally

non-rectangular more tricky...

From Rectangular to Hexagonal

[M. Qi, H. Smith, MIT]

an earlier design: (& currently more popular) The Woodpile Crystal

[K. Ho et al., Solid State Comm. 89, 413 (1994)] [H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994)]

Up to $\sim 17\%$ gap for Si/air

[Figures from S. Y. Lin et al., Nature 394, 251 (1998)]

1.25 Periods of Woodpile

(4 "log" layers = 1 period)

[S. Y. Lin et al., Nature 394, 251 (1998)]

"UV Stepper:" e-beam mask at ~4x size + UV through mask, focused on substrate

Good: high resolution, mass production Bad: expensive (\$20 million)

1.25 Periods of Woodpile @ 1.55µm

(4 "log" layers = 1 period)

[S. Y. Lin et al., Nature 394, 251 (1998)]

fuse wafers together...

...dissolve upper substrate

double, double, toil and trouble...

"It's only wafer-thin." [M. Python]

Woodpile Gap from $1.3-1.55\mu m$

Stacking by Micromanipulation

[K. Aoki et al., Appl. Phys. Lett. 81 (17), 3122 (2002)]

Stacking by Micromanipulation

[K. Aoki et al., Appl. Phys. Lett. 81 (17), 3122 (2002)]

Yes, it works: Gap at $\sim 4\mu m$

[K. Aoki et al., Nature Materials 2 (2), 117 (2003)]

 $1\mu m$

Hey, forget these FCC crystals! simple-cubic lattice [S.-Y. Lin et al., JOSA B 18, 32 (2001).]

A Metal Photonic Crystal

а

[J. G. Fleming et al., Nature 417, 52 (2002)]

Thermal properties of metal crystal

[J. G. Fleming et al., Nature 417, 52 (2002)]

enough layer-by-layer already!

Two-Photon Lithography

Lithography is a Beast

[S. Kawata et al., Nature 412, 697 (2001)]

For a physicist, this is cooler...

[S. Kawata et al., Nature 412, 697 (2001)]

(300nm diameter coils, suspended in ethanol, viscosity-damped)

A Two-Photon Woodpile Crystal

Difficult topologies

[fig. courtesy J. W. Perry, U. Arizona]

[B. H. Cumpston et al., Nature 398, 51 (1999)]

(much work on materials with lower power 2-photon process)

- Arbitrary latticeNo "mask"
- Fast/cheap prototyping

Mass-production, pretty please?

beam polarizations + amplitudes (8 parameters) give unit cell

One-Photon Holographic Lithography

[D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002)]

huge volumes, long-range periodic, fcc lattice...backfill for high contrast

One-Photon Holographic Lithography

[D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002)]

[111] cleavages

Mass-production II: Colloids

Mass-production II: Colloids

http://www.icmm.csic.es/cefe/

Inverse Opals

[figs courtesy D. Norris, UMN]

fcc solid spheres do not have a gap...

...but fcc spherical holes in Si do have a gap

In Order To Form [figs courtesy D. Norris, UMN] a More Perfect Crystal...

- Capillary forces during drying cause assembly in the meniscus
- Extremely flat, large-area opals of controllable thickness

Inverse-Opal Photonic Crystal

[fig courtesy D. Norris, UMN]

[Y. A. Vlasov et al., Nature 414, 289 (2001).]

Inverse-Opal Band Gap

[Y. A. Vlasov et al., Nature 414, 289 (2001).]

Wavelength (µm)

Mass-Production?

What about defects?

(Remember cavities, waveguides...?)

Answer: fabricate bulk crystal via mass production

+ *N*-photon lithography for defects

(Use confocal microscopy to see what you are doing, *i.e.* alignment)

Inserting Defects in Inverse Opals *e.g.*, Waveguides

Mass-Production III: Block (not Bloch) Copolymers

[Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. Lightwave Tech. 17, 1963 (1999)]

Block-Copolymer 1d Crystal

CdSe nanocrystals for higher index

(with surfactant to attract particles to one phase)

(UV bandgap)

[Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. Lightwave Tech. 17, 1963 (1999)]

Block-Copolymer 1d Visible Bandgap

Flexible material: bandgap can be shifted by stretching it!

reflection for differing homopolymer %

dark/light: polystyrene/polyisoprene

n = 1.59/1.51

[A. Urbas et al., Advanced Materials 12, 812 (2000)]

Block-Copolymer 2d Crystal

[Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. Lightwave Tech. 17, 1963 (1999)]

Be GLAD: Even more crystals!

"GLAD" = "GLancing Angle Deposition"

[O. Toader and S. John, Science 292, 1133 (2001)]

GLAD it works?

[S. R. Kennedy et al., Nano Letters 2, 59 (2002)]

GLAD it works!

[S. R. Kennedy et al., Nano Letters 2, 59 (2002)]

A new twist on layer-by-layer...

[S. Kawakami et al., Appl. Phys. Lett. 74, 463 (1999)]

Auto-cloning

[S. Kawakami et al., Appl. Phys. Lett. 74, 463 (1999)]

Auto-cloned Photonic Crystal

"Yablonovite"

[E. Yablonovitch, T. M. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991)]

[image: http://www.ee.ucla.edu/labs/photon/]

(Topology is very similar to 2000 layer-by-layer crystal)

diamond-like fcc crystal

earliest "fabrication-amenable" alternative to diamond spheres

Making Yablonovite

e-beam mask + chemically-assisted ion-beam etching

[C. C. Cheng et al., Physica Scripta. T68, 17 (1996)]

in short:

Those experimentalists are damned clever*

* either that, or they are out of their minds