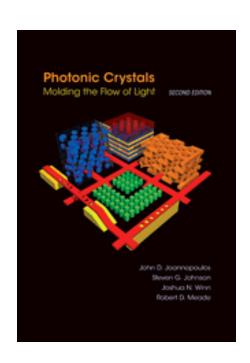


Free Materials Online



Photonic Crystals book: jdj.mit.edu/book

Tutorial slides: jdj.mit.edu/photons/tutorial

Free electromagnetic simulation software (FDTD, mode solver, etc.) jdj.mit.edu/wiki

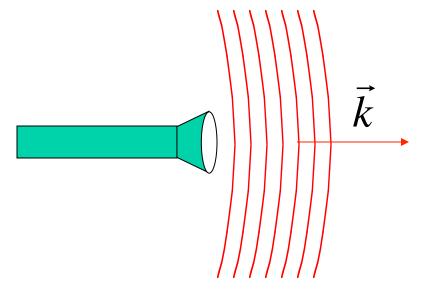
Outline

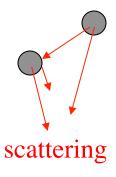
- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

To Begin: A Cartoon in 2d

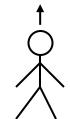




planewave

$$\vec{E} \cdot \vec{H} \sim e^{i(\vec{k} \cdot \vec{x} - \omega t)}$$

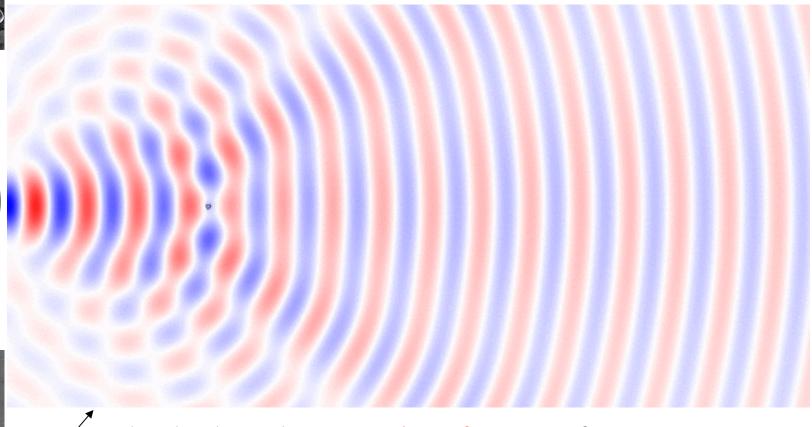
$$|\vec{k}| = \omega / c = \frac{2\pi}{\lambda}$$



small particles: Lord Rayleigh (1871) why the sky is blue

... Waves Can Scatter

here: a little circular speck of silicon



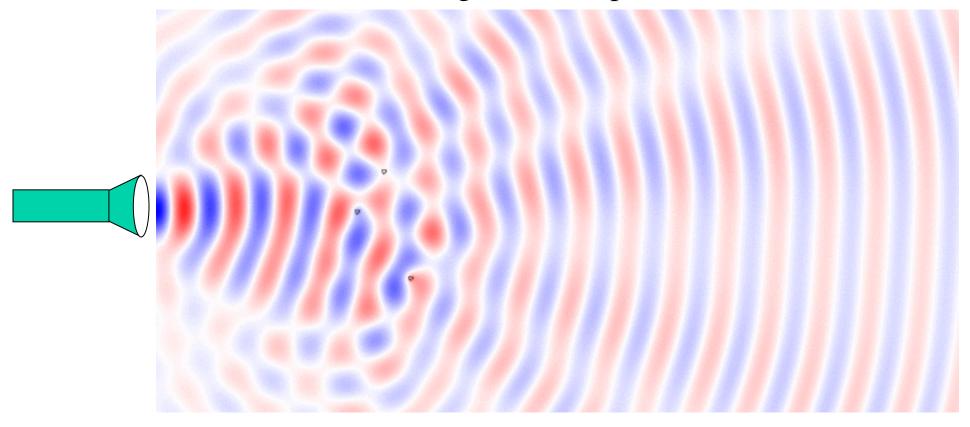
checkerboard pattern: interference of waves

traveling in different directions

scattering by spheres: solved by Gustave Mie (1908)

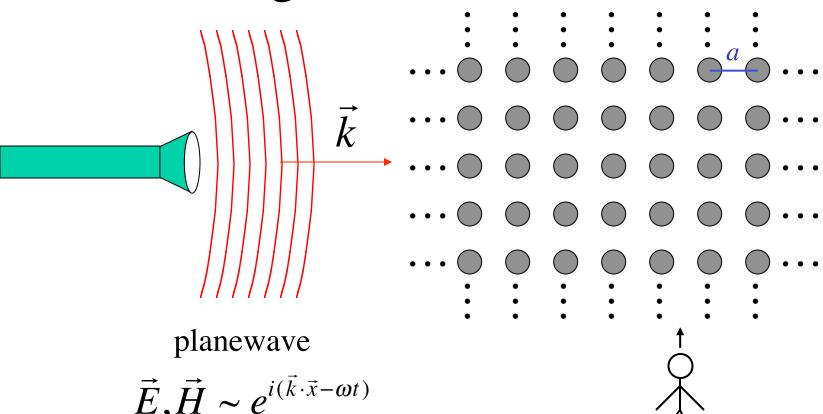
Multiple Scattering is Just Messier?

here: scattering off three specks of silicon



can be solved on a computer, but not terribly interesting...

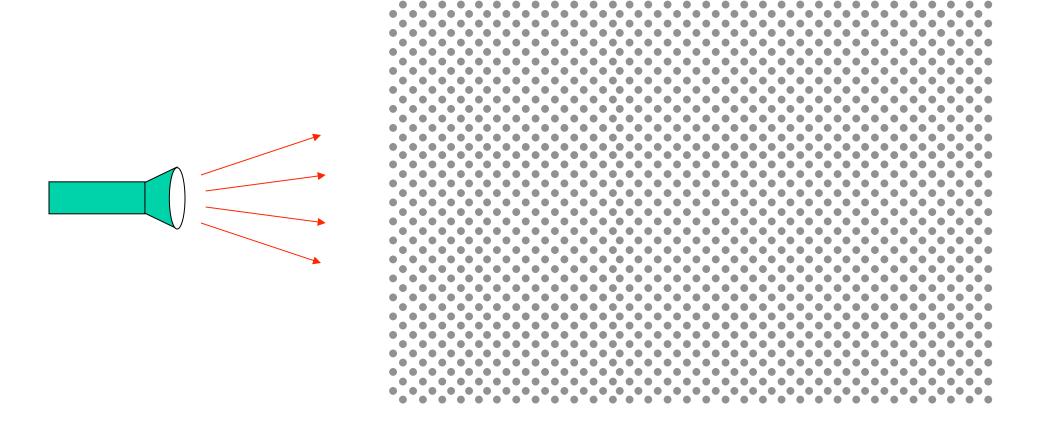
To Begin: A Cartoon in 2d



 $|\vec{E}, \vec{H} \sim e^{i(\vec{k} \cdot \vec{x} - \omega t)}$ $|\vec{k}| = \omega / c = \frac{2\pi}{\lambda}$ for most λ , beam(s) propagate through crystal without scattering (scattering cancels coherently)

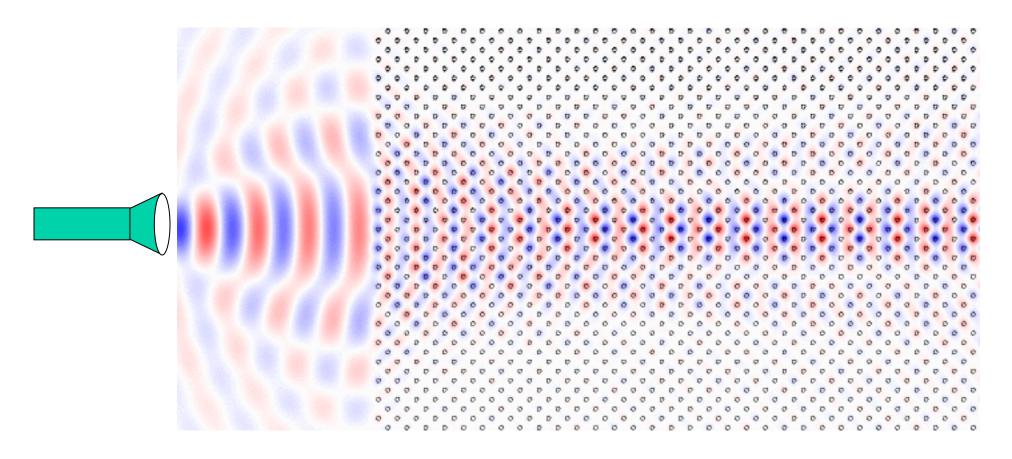
...but for some λ (~ 2a), no light can propagate: a photonic band gap

An even bigger mess? zillons of scatterers



Blech, light will just scatter like crazy and go all over the place ... how boring!

Not so messy, not so boring...



the light seems to form several *coherent beams* that propagate *without scattering*

... and almost without diffraction (supercollimation)

...the magic of symmetry...

[Emmy Noether, 1915]

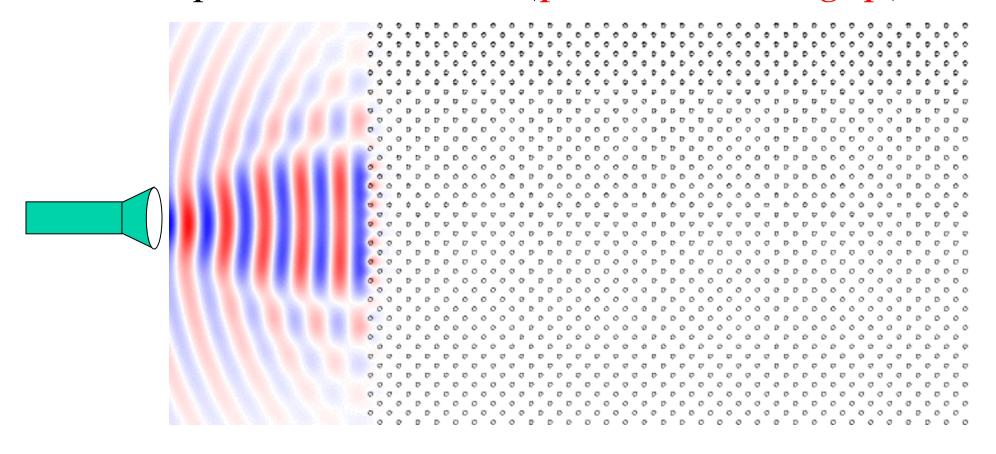
Noether's theorem: symmetry = conservation laws

In this case, periodicity

- = conserved "momentum"
- = wave solutions without scattering [Bloch waves]

Felix Bloch (1928)

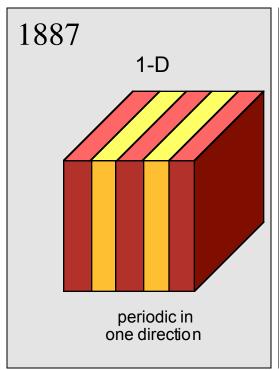
A slight change? Shrink λ by 20% an "optical insulator" (photonic bandgap)

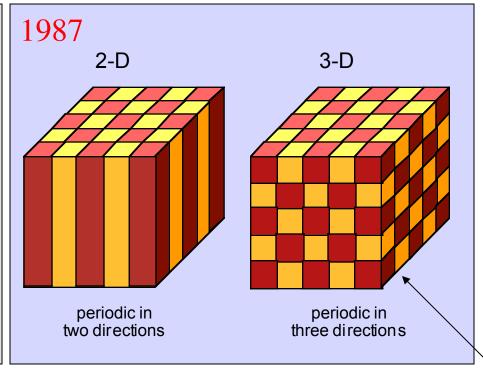


light cannot penetrate the structure at this wavelength! all of the scattering destructively interferes

Photonic Crystals

periodic electromagnetic media





(need a more complex topology)

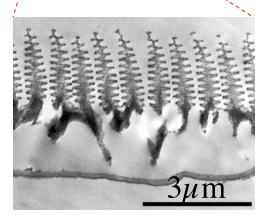
with photonic band gaps: "optical insulators"

Photonic Crystals in Nature

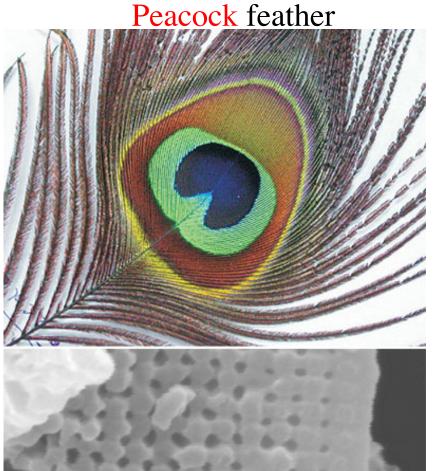
Morpho rhetenor butterfly

wing scale:

[P. Vukosic *et al.*, *Proc. Roy. Soc: Bio. Sci.* **266**, 1403 (1999)]



[also: B. Gralak et al., Opt. Express 9, 567 (2001)]

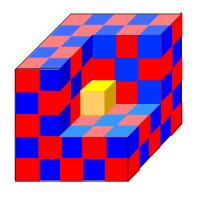


[J. Zi et al, Proc. Nat. Acad. Sci. USA, **100**, 12576 (2003)]

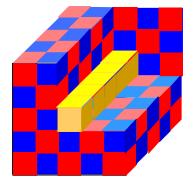
[figs: Blau, *Physics Today* **57**, 18 (2004)]

Photonic Crystals

periodic electromagnetic media



can trap light in cavities

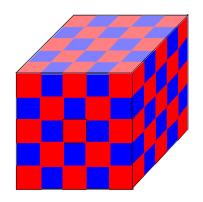


and waveguides ("wires")

with photonic band gaps:
"optical insulators"
for holding and controlling light

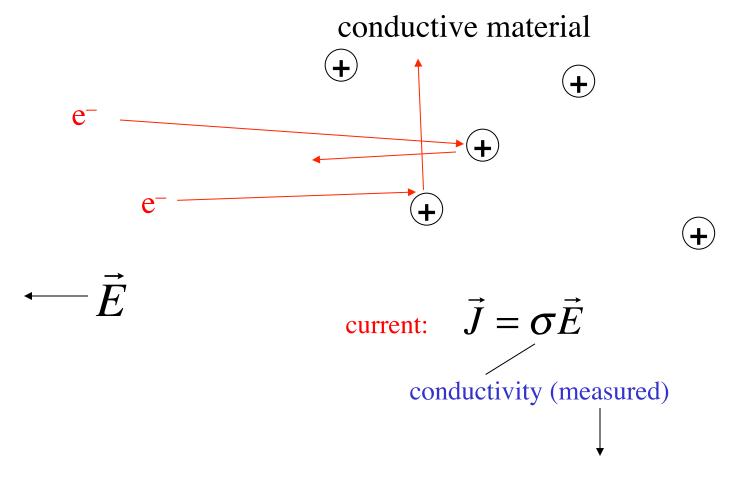
Photonic Crystals

periodic electromagnetic media



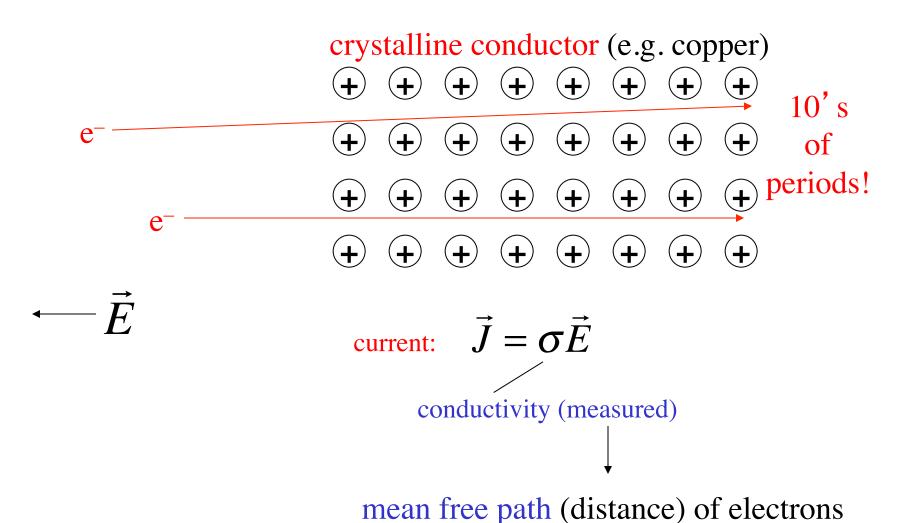
But how can we understand such complex systems? Add up the infinite sum of scattering? Ugh!

A mystery from the 19th century



mean free path (distance) of electrons

A mystery from the 19th century



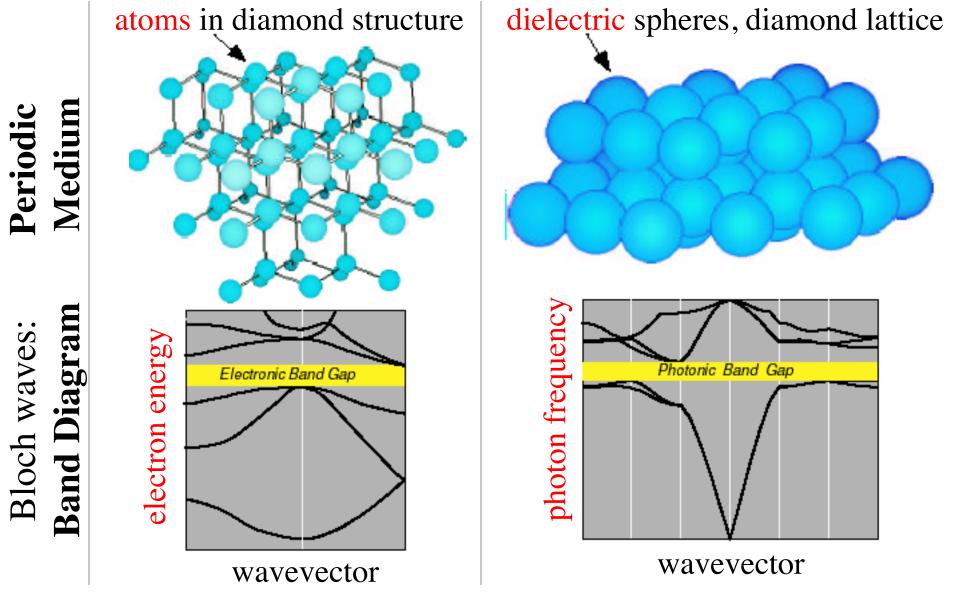
A mystery solved...

- 1 electrons are waves (quantum mechanics)
 - waves in a periodic medium can propagate without scattering:

Bloch's Theorem (1d: Floquet's)

The foundations do not depend on the specific wave equation.

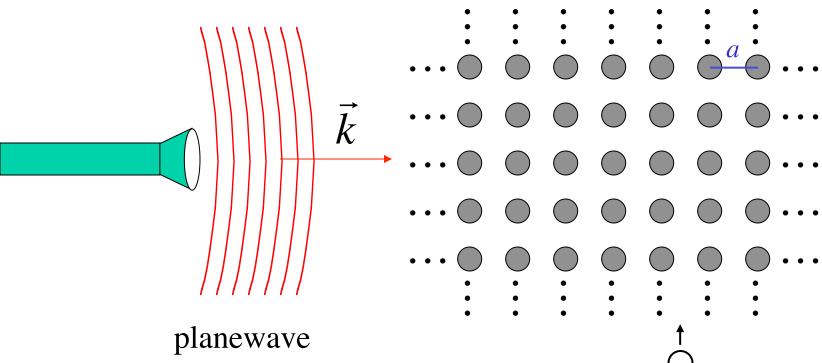
Electronic and Photonic Crystals



strongly interacting fermions

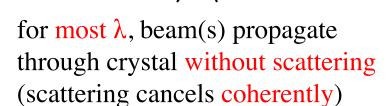
weakly-interacting bosons

Time to Analyze the Cartoon



$$\vec{E} \cdot \vec{H} \sim e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$

$$|\vec{k}| = \omega / c = \frac{2\pi}{\lambda}$$



...but for some λ (~ 2a), no light can propagate: a photonic band gap



James Clerk Maxwell 1864

Maxwell's Equations

$$\nabla \cdot \mathbf{B} = 0$$

Gauss:

$$\nabla \cdot \mathbf{D} = \rho$$

constitutive relations:

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$\varepsilon_0 \mathbf{E} = \mathbf{D} - \mathbf{P}$$
$$\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

electromagnetic fields:

E = electric field

D = displacement field

H = magnetic field / induction

 \mathbf{B} = magnetic field / flux density

constants: ε_0 , μ_0 = vacuum permittivity/permeability c = vacuum speed of light = $(\varepsilon_0 \ \mu_0)^{-1/2}$

sources: J = current density $\rho = \text{charge density}$

material response to fields:

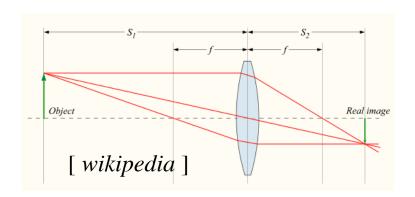
 \mathbf{P} = polarization density

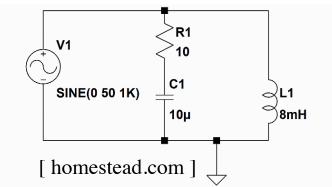
M = magnetization density

When can we solve this mess?

- Very small wavelengths: ray optics
- Very large wavelengths:

 quasistatics (freshman E&M)
 & lumped circuit models





- Wavelengths comparable to geometry?
 - handful of cases can be ~solved analytically:
 planes, spheres, cylinders, empty space
 - everything else just a mess for computer...?

Back to Maxwell, with some simplifications

- source-free equations (propagation of light, not creation): $\mathbf{J} = 0$, $\rho = 0$
- Linear, dispersionless (instantaneous response) materials:

$$\mathbf{P} = \boldsymbol{\varepsilon}_0 \ \chi_e \ \mathbf{E}$$

$$\mathbf{M} = \boldsymbol{\chi}_m \ \mathbf{H}$$

$$\mathbf{B} = \boldsymbol{\mu}_0 \ (1 + \boldsymbol{\chi}_m) \ \mathbf{H} = \boldsymbol{\mu}_0 \ \boldsymbol{\mu}_r \ \mathbf{H}$$

(nonlinearities very weak in EM ... we'll treat later)(dispersion can be negligible in narrow enough bandwidth)

where $\varepsilon_y = 1 + \chi_e = \text{relative permittivity}$ (drop r subscript) or dielectric constant $\mu_y = 1 + \chi_m = \text{relative permeability}$

 $\varepsilon \mu = (\text{refractive index})^2$

- *Isotropic* materials: ε , μ = scalars (not matrices)
- *Non-magnetic* materials: $\mu = 1$ (true at optical/infrared)
- Lossless, transparent materials: ε real, > 0 (< 0 for metals...bad at infrared)

Simplified Maxwell

$$\nabla \cdot \mathbf{H} = 0$$
 $\nabla \cdot \varepsilon \mathbf{E} = 0$

$$\nabla \times \mathbf{H} = \varepsilon_0 \varepsilon(\mathbf{x}) \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{E} = -\mu_0 \mu \frac{\partial \mathbf{H}}{\partial t} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$

- Linear, time-invariant system:
 - \Rightarrow look for sinusoidal solutions $\mathbf{E}(\mathbf{x},t) = \mathbf{E}(\mathbf{x})e^{-i\omega t}$, $\mathbf{H}(\mathbf{x},t) = \mathbf{H}(\mathbf{x})e^{-i\omega t}$ (i.e. Fourier transform)

$$\nabla \times \mathbf{H} = -i\omega \varepsilon_0 \varepsilon(\mathbf{x}) \mathbf{E} \qquad \nabla \times \mathbf{E} = i\omega \mu_0 \mathbf{H}$$

[note: real materials have dispersion: ε depends on ω = non-instantaneous response]

... these, we can work with

Just to *solve* PDEs, computers are very good... But we also want to *understand* the solutions.

Mathematically, use *structure* of the equations, not explicit solution: linear algebra, group theory, functional analysis, perturbative methods, resonant modes...

This lecture: omit proofs & derivations, jump from starting points to results

Fun with Math

$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial}{\partial t} \vec{H} = i \frac{\omega}{c} \vec{H}$$

$$\vec{\nabla} \times \vec{H} = \varepsilon \frac{1}{c} \frac{\partial}{\partial t} \vec{E} + \vec{J} = -i \frac{\omega}{c} \varepsilon \vec{E}$$

First task: get rid of this mess

dielectric function $\varepsilon(\mathbf{x}) = n^2(\mathbf{x})$

$$\nabla \times \frac{1}{\varepsilon} \nabla \times \vec{H} = \left(\frac{\omega}{c}\right)^{2} \vec{H} + \text{constraint} \\ \nabla \cdot \vec{H} = 0$$
eigen-operator eigen-value eigen-state

Hermitian Eigenproblems

$$\nabla \times \frac{1}{\varepsilon} \nabla \times \vec{H} = \left(\frac{\omega}{c}\right)^{2} \vec{H} + \text{constraint} \\ \nabla \cdot \vec{H} = 0$$
eigen-operator eigen-value eigen-state

Hermitian for real (lossless) ε

well-known properties from linear algebra:

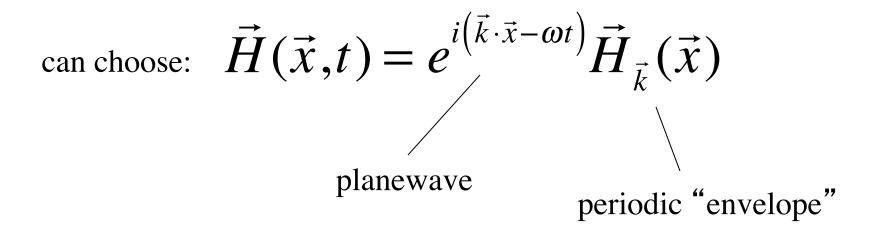
ω are real (lossless)
eigen-states are orthogonal
eigen-states are complete (give all solutions)*

^{*} Technically, completeness requires slightly more than just Hermitian-ness.

Periodic Hermitian Eigenproblems

[G. Floquet, "Sur les équations différentielles linéaries à coefficients périodiques," *Ann. École Norm. Sup.* **12**, 47–88 (1883).] [F. Bloch, "Über die quantenmechanik der electronen in kristallgittern," *Z. Physik* **52**, 555–600 (1928).]

if eigen-operator is periodic, then Bloch-Floquet theorem applies:

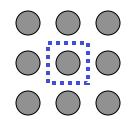


Corollary 1: k is conserved, i.e. no scattering of Bloch wave

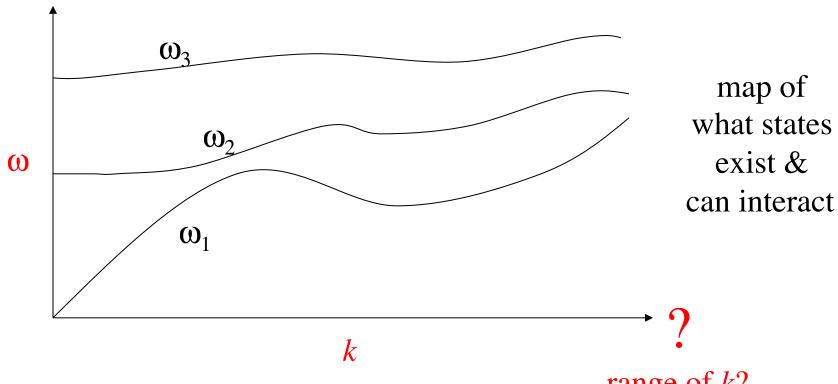
Corollary 2: $\vec{H}_{\vec{k}}$ given by finite unit cell, so ω are discrete $\omega_n(\mathbf{k})$

Periodic Hermitian Eigenproblems

Corollary 2: $\vec{H}_{\vec{k}}$ given by finite unit cell, so ω are discrete $\omega_n(\mathbf{k})$



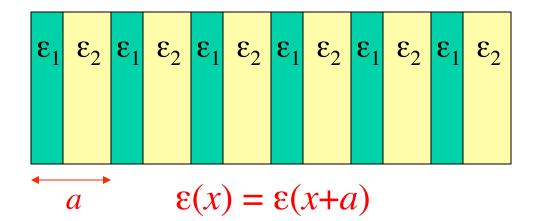
band diagram (dispersion relation)



range of k?

Periodic Hermitian Eigenproblems in 1d

$$H(x) = e^{ikx} H_k(x)$$



Consider
$$k+2\pi/a$$
: $e^{i(k+\frac{2\pi}{a})x}H_{k+\frac{2\pi}{a}}(x) = e^{ikx}\left[e^{i\frac{2\pi}{a}x}H_{k+\frac{2\pi}{a}}(x)\right]$

k is periodic:

 $k + 2\pi/a$ equivalent to k

"quasi-phase-matching"

periodic!

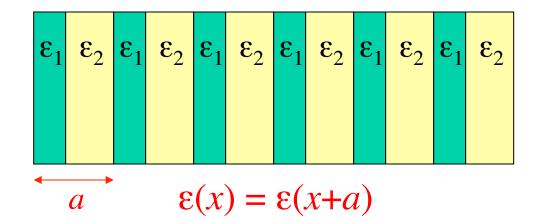
satisfies same equation as H_k

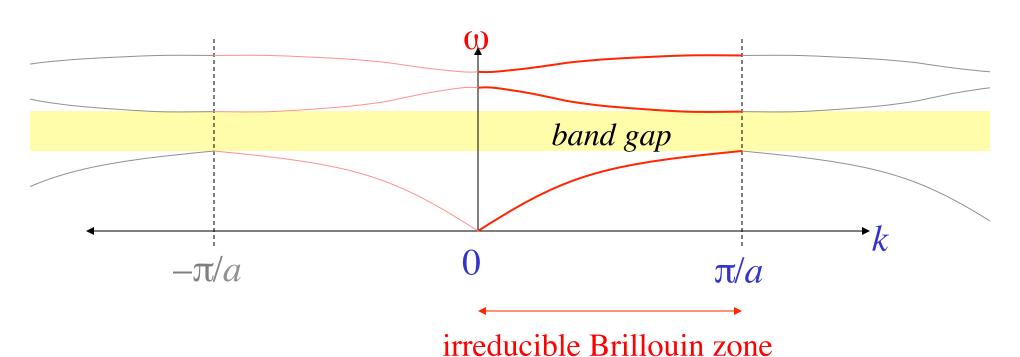
$$=H_k$$

Periodic Hermitian Eigenproblems in 1d

k is periodic:

 $k + 2\pi/a$ equivalent to k "quasi-phase-matching"

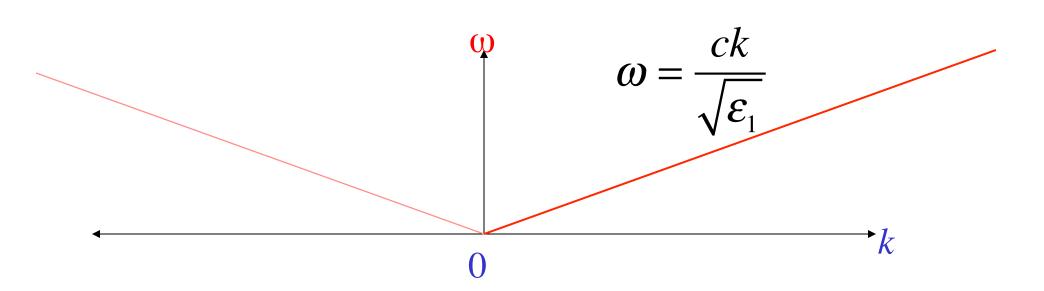




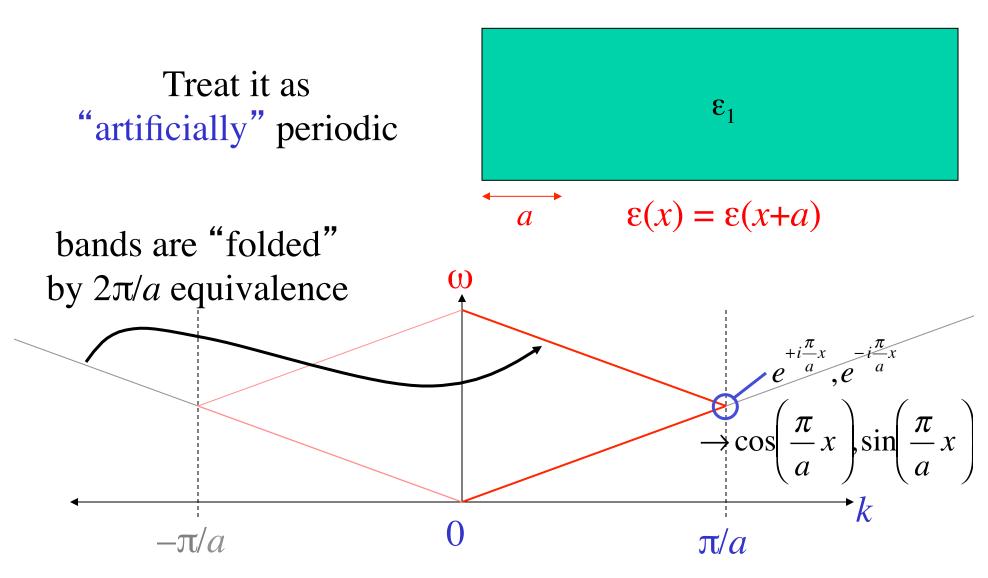
[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Start with a uniform (1d) medium:

 ϵ_1

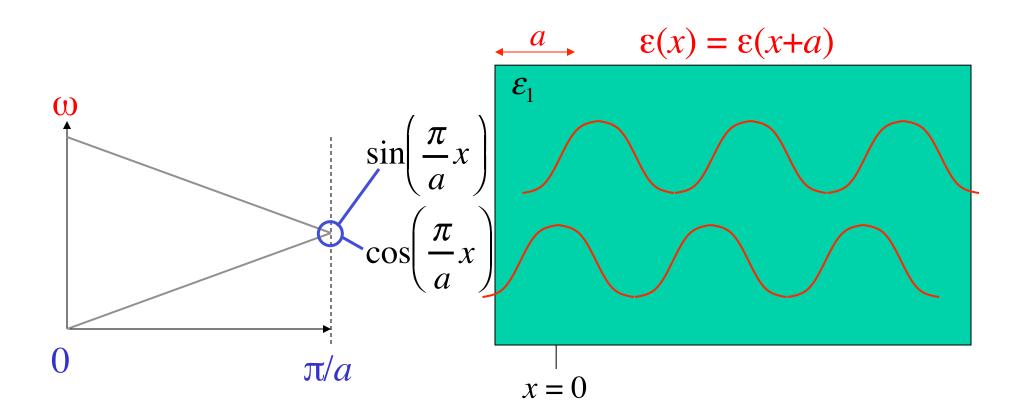


[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]



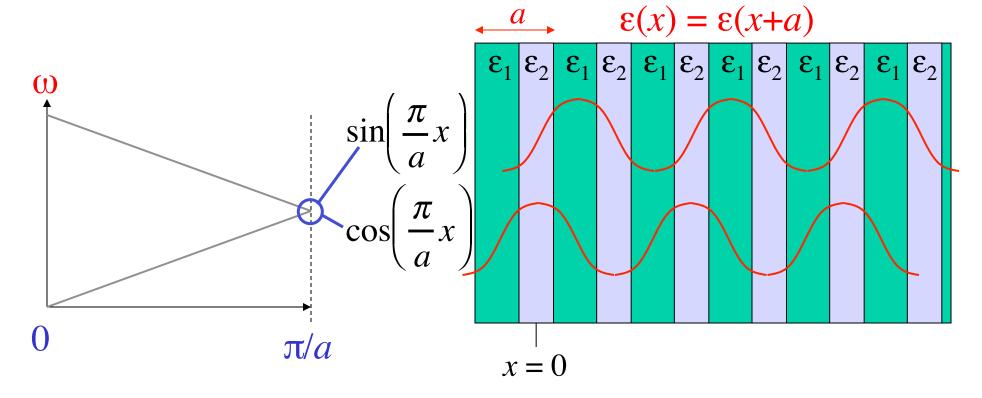
[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Treat it as "artificially" periodic



[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Add a small "real" periodicity $\varepsilon_2 = \varepsilon_1 + \Delta \varepsilon$



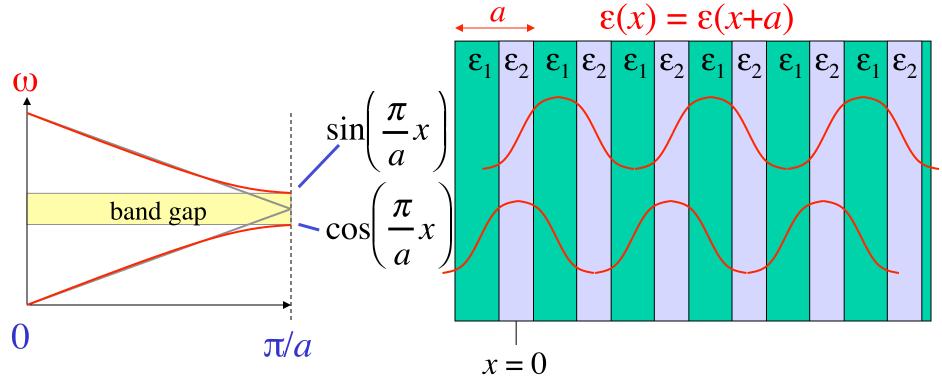
Any 1d Periodic System has a Gap

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Add a small "real" periodicity $\varepsilon_2 = \varepsilon_1 + \Delta \varepsilon$

Splitting of degeneracy:

state concentrated in higher index (ε_2) has lower frequency



Some 2d and 3d systems have gaps

• In general, eigen-frequencies satisfy Variational Theorem:

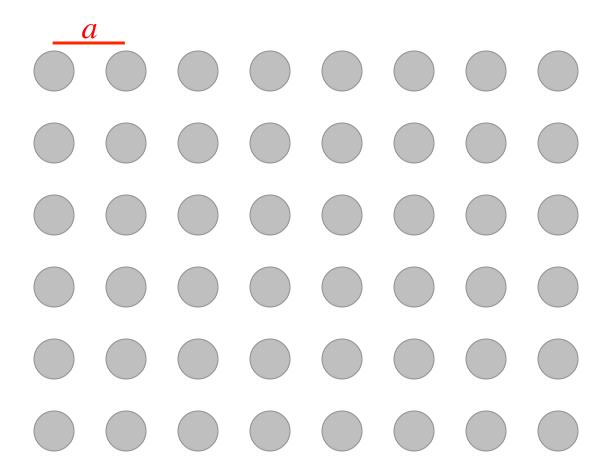
$$\omega_{1}(\vec{k})^{2} = \min_{\substack{\vec{E}_{1} \\ \nabla \cdot \varepsilon \vec{E}_{1} = 0}} \frac{\int \left| \left(\nabla + i\vec{k} \right) \times \vec{E}_{1} \right|^{2} \text{"kinetic"}}{\int \varepsilon \left| \vec{E}_{1} \right|^{2}} c^{2}$$
inverse "potential"

$$\omega_2(\vec{k})^2 = \min_{\vec{E}_2} \| \cdots \|$$
 bands "want" to be in high- ε

$$\nabla \cdot \varepsilon \vec{E}_2 = 0$$

$$\int \varepsilon E_1^* \cdot E_2 = 0 \dots$$
 but are forced out by orthogonality
$$\Rightarrow \text{ band gap (maybe)}$$

A 2d Model System

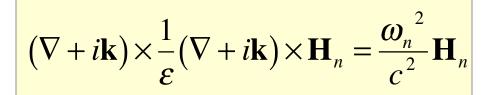


Square lattice of dielectric rods ($\varepsilon = 12 \sim Si$) in air ($\varepsilon = 1$)

Solving the Maxwell Eigenproblem

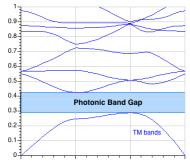
Finite cell \rightarrow discrete eigenvalues ω_n

Want to solve for $\omega_n(\mathbf{k})$, & plot vs. "all" **k** for "all" n,



constraint:
$$(\nabla + i\mathbf{k}) \cdot \mathbf{H} = 0$$

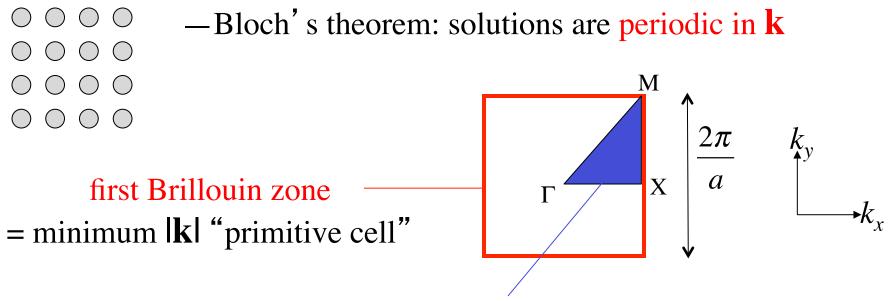
where magnetic field = $\mathbf{H}(\mathbf{x}) e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$



- 1 Limit range of \mathbf{k} : irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 1

1 Limit range of **k**: irreducible Brillouin zone



- irreducible Brillouin zone: reduced by symmetry
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2a

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis (N)

$$|\mathbf{H}\rangle = \mathbf{H}(\mathbf{x}_t) = \sum_{m=1}^{N} h_m \mathbf{b}_m(\mathbf{x}_t)$$
 solve: $\hat{A}|\mathbf{H}\rangle = \boldsymbol{\omega}^2 |\mathbf{H}\rangle$

finite matrix problem: $Ah = \omega^2 Bh$

$$\langle \mathbf{f} | \mathbf{g} \rangle = \int \mathbf{f}^* \cdot \mathbf{g}$$
 $A_{m\ell} = \langle \mathbf{b}_m | \hat{A} | \mathbf{b}_\ell \rangle$ $B_{m\ell} = \langle \mathbf{b}_m | \mathbf{b}_\ell \rangle$

3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2b

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
 - must satisfy constraint: $(\nabla + i\mathbf{k}) \cdot \mathbf{H} = 0$

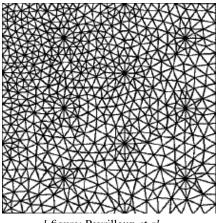
Planewave (FFT) basis

$\mathbf{H}(\mathbf{x}_t) = \sum_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{x}_t}$

constraint: $\mathbf{H}_{\mathbf{G}} \cdot (\mathbf{G} + \mathbf{k}) = 0$

uniform "grid," periodic boundaries, simple code, O(N log N)

Finite-element basis



[figure: Peyrilloux *et al.*, *J. Lightwave Tech*. **21**, 536 (2003)]

constraint, boundary conditions:

Nédélec elements

[Nédélec, *Numerische Math*. **35**, 315 (1980)]

nonuniform mesh, more arbitrary boundaries, complex code & mesh, O(*N*)

3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 3a

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Slow way: compute A & B, ask LAPACK for eigenvalues

— requires $O(N^2)$ storage, $O(N^3)$ time

Faster way:

- start with *initial guess* eigenvector h_0
- *iteratively* improve
- O(Np) storage, ~ $O(Np^2)$ time for p eigenvectors (p smallest eigenvalues)

Solving the Maxwell Eigenproblem: 3b

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
 Rayleigh-quotient minimization

Solving the Maxwell Eigenproblem: 3c

- Limit range of k: irreducible Brillouin zone
- Limit degrees of freedom: expand H in finite basis
- Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue ω_0 minimizes:

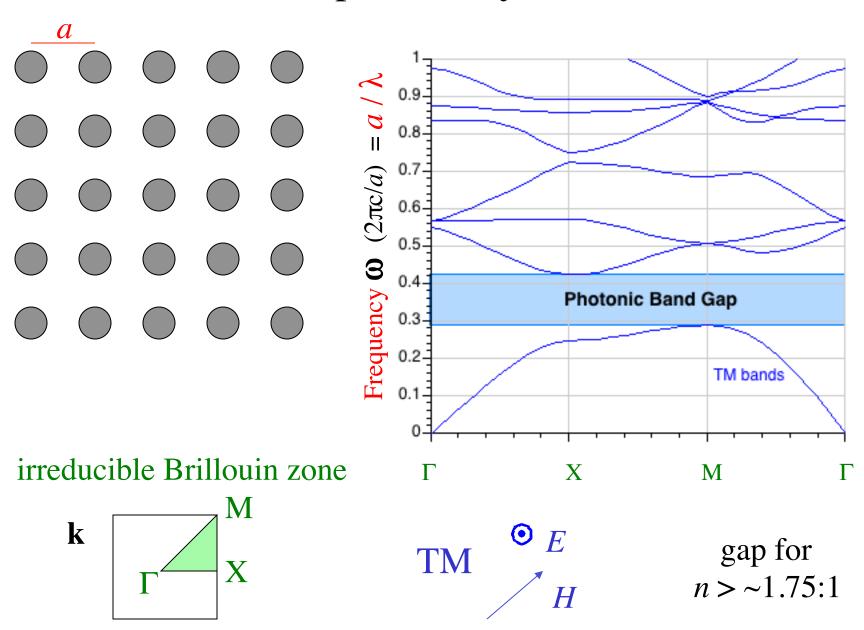
"variational theorem"
$$\omega_0^2 = \min_h \frac{h' \ Ah}{h' \ Bh}$$

minimize by preconditioned conjugate-gradient (or...)

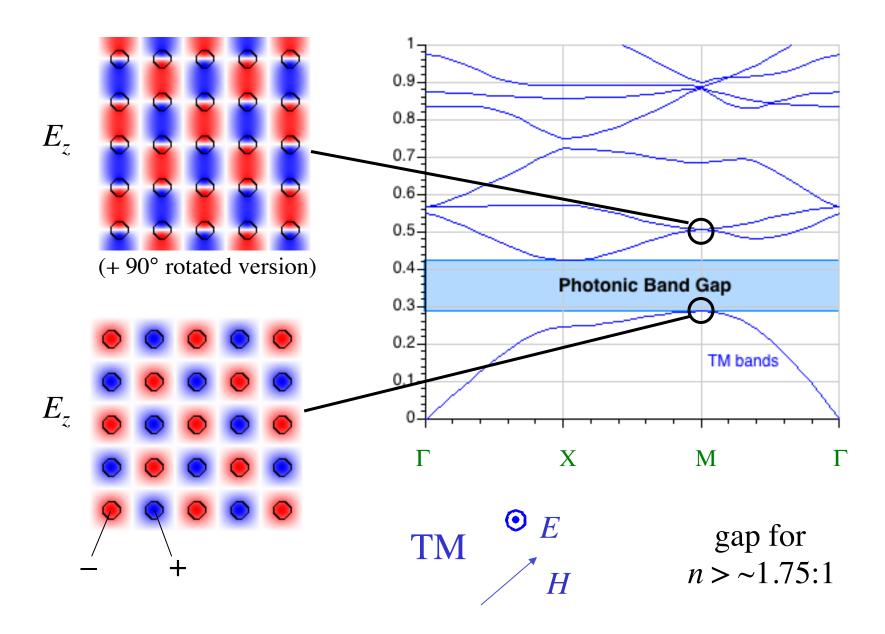
Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

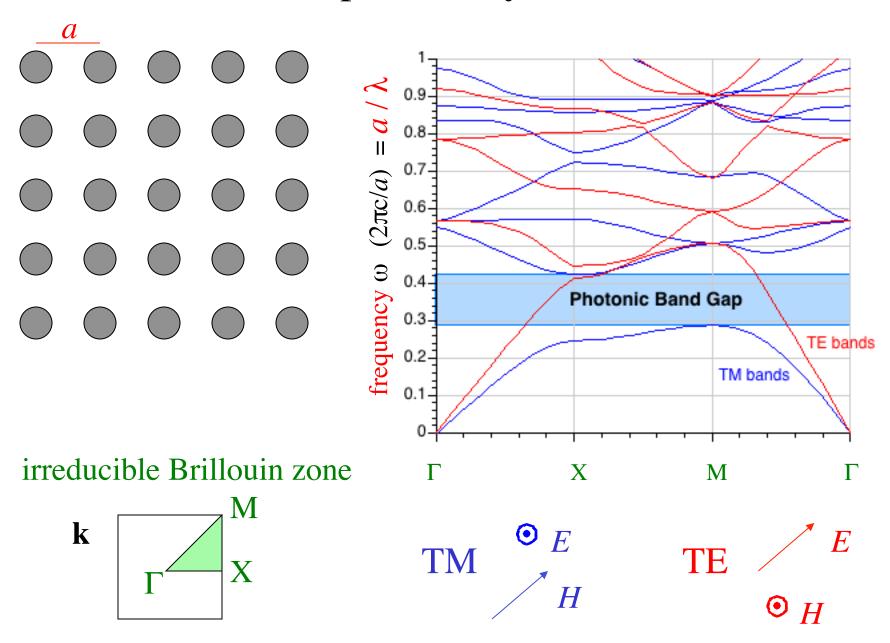
2d periodicity, ε =12:1



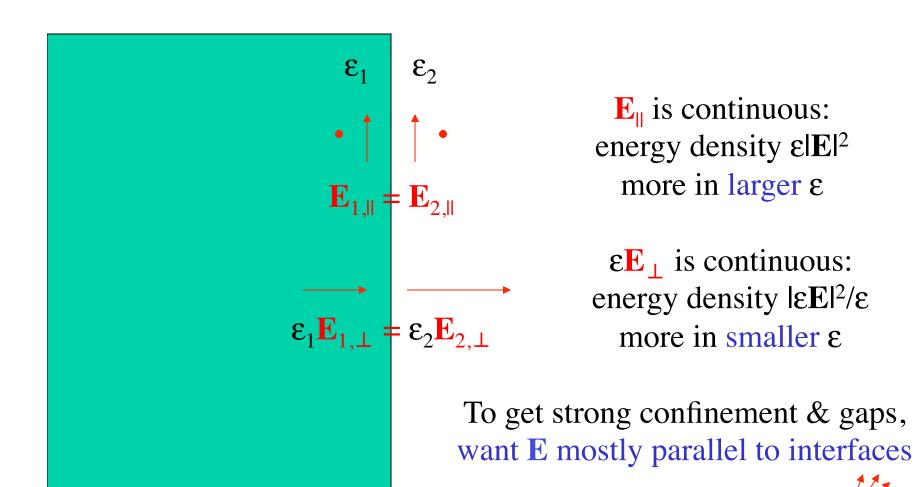
2d periodicity, ε =12:1



2d periodicity, ε =12:1

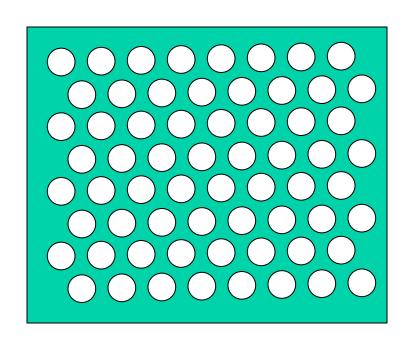


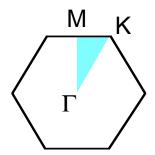
What a difference a boundary condition makes...

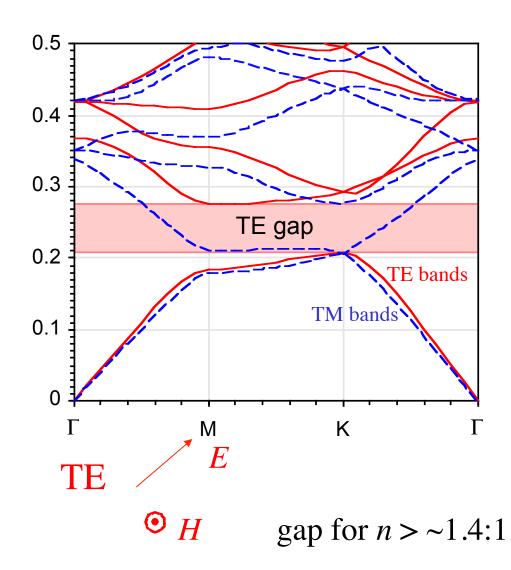


 $TM: \parallel$

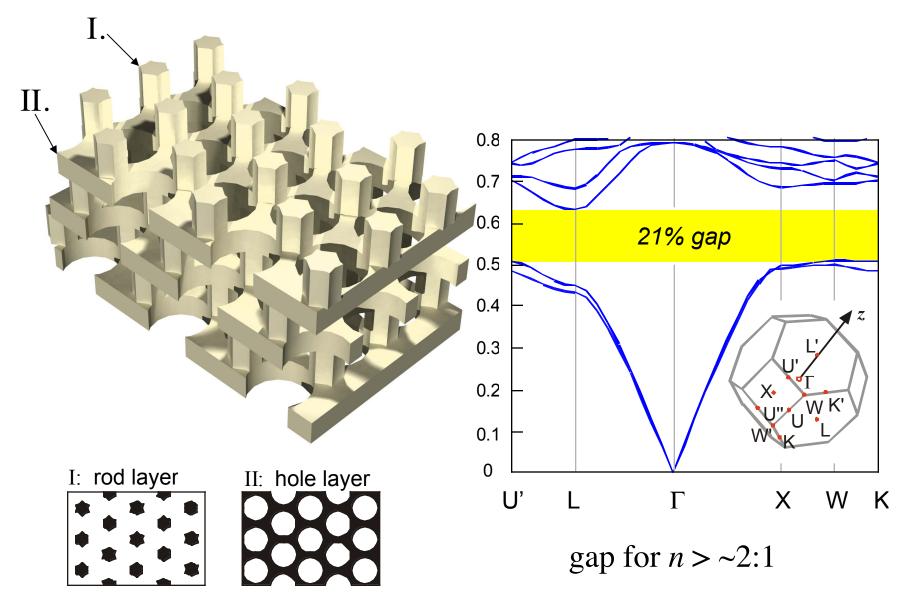
2d photonic crystal: TE gap, ε =12:1







3d photonic crystal: complete gap, ε =12:1



[S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)]

You, too, can compute photonic eigenmodes!

MIT Photonic-Bands (MPB) package:

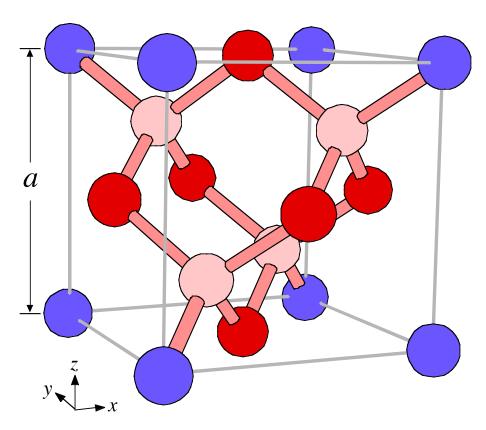
http://ab-initio.mit.edu/mpb

The Mother of (almost) All Bandgaps

The diamond lattice:

fcc (face-centered-cubic)
with two "atoms" per unit cell

(primitive)



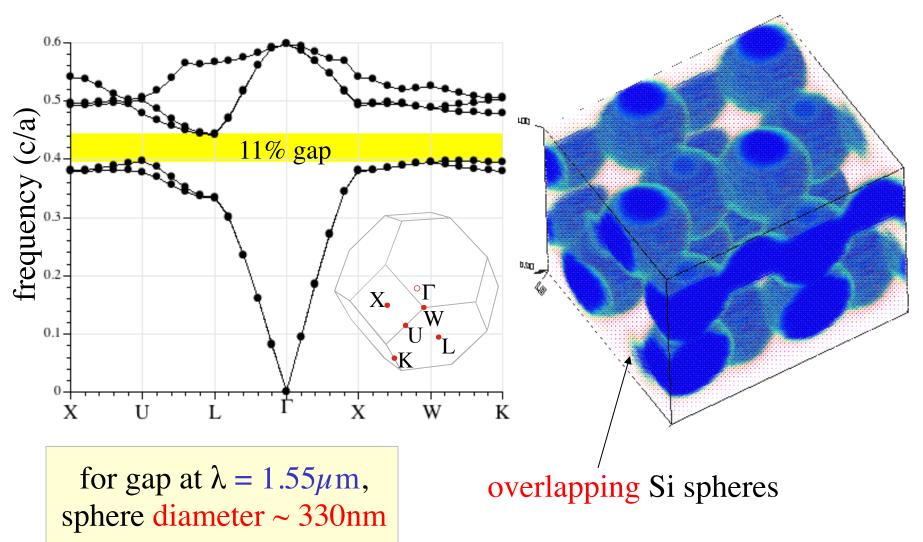
Recipe for a complete gap:

fcc = most-spherical Brillouin zone

+ diamond "bonds" = lowest (two) bands can concentrate in lines

The First 3d Bandgap Structure

K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).



MPB tutorial, http://ab-initio.mit.edu/mpb

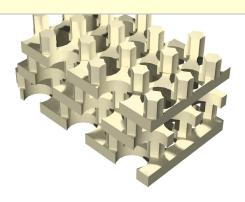
Layer-by-Layer Lithography

• Fabrication of 2d patterns in Si or GaAs is very advanced (think: Pentium IV, 50 million transistors)

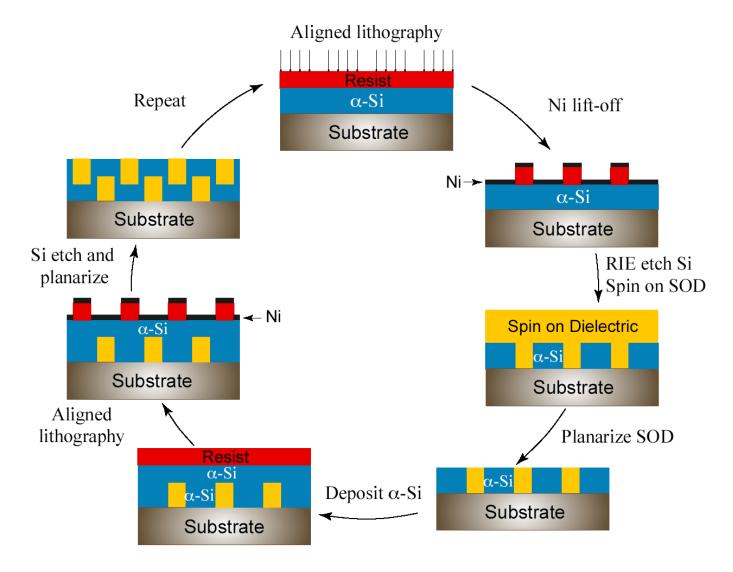
...inter-layer alignment techniques are only slightly more exotic

So, make 3d structure one layer at a time

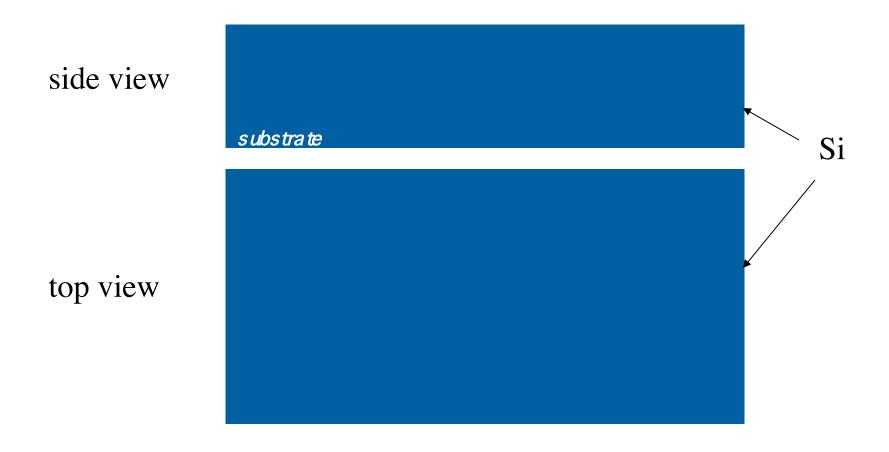
Need a 3d crystal with constant cross-section layers



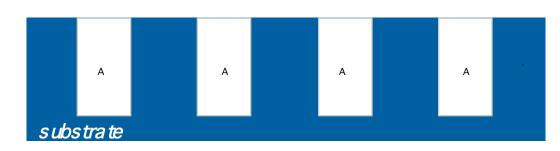
A Schematic

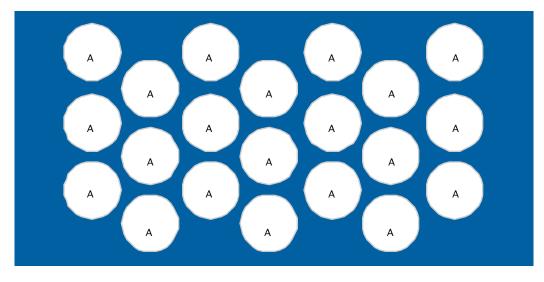


[M. Qi, H. Smith, MIT]

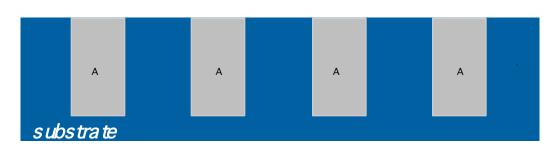


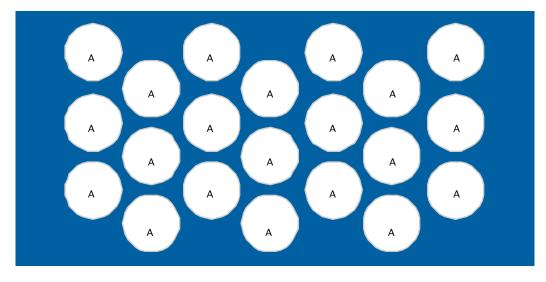
expose/etch holes



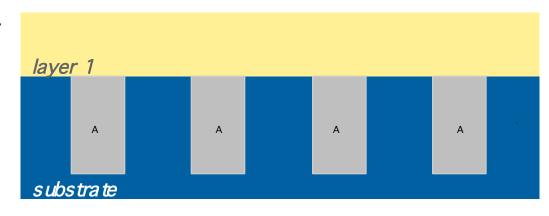


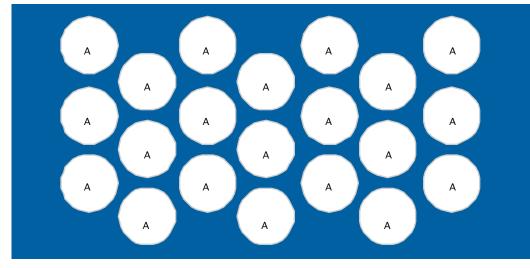
backfill with silica (SiO₂) & polish



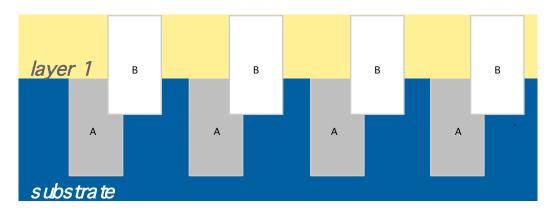


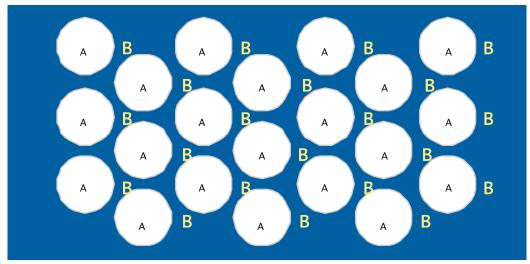
deposit another Si layer



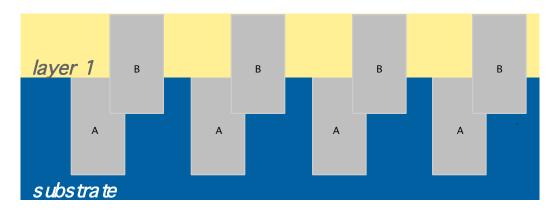


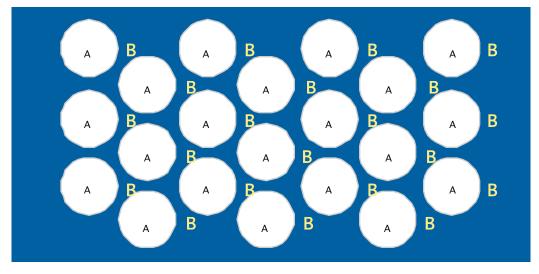
dig more holes offset & overlapping





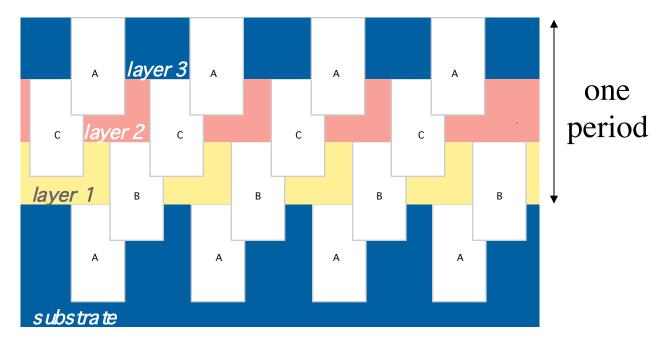
backfill

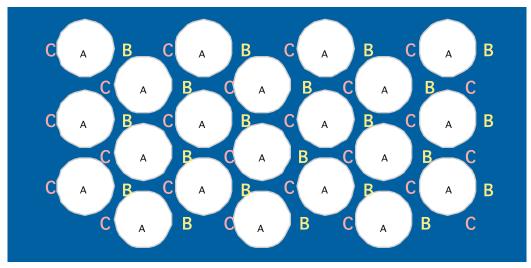


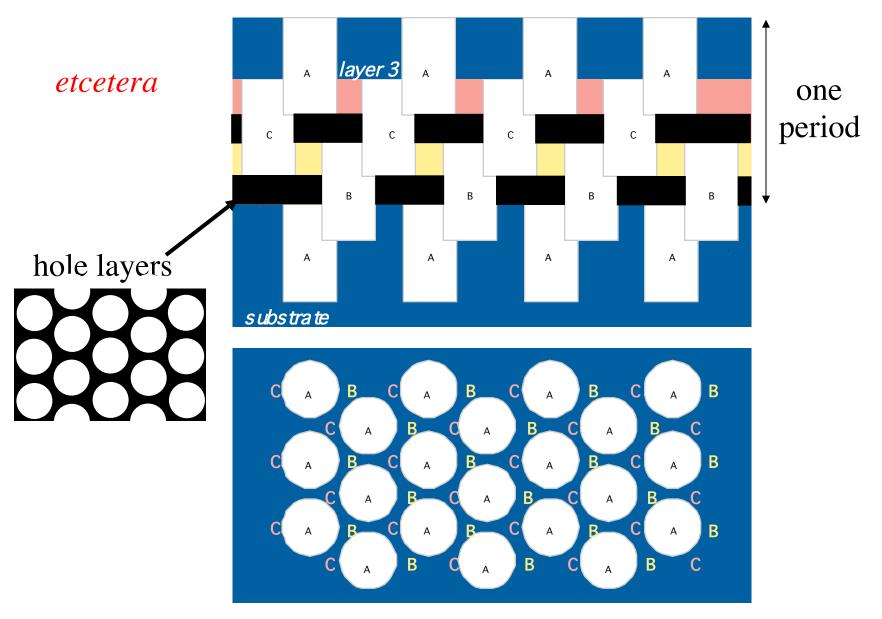


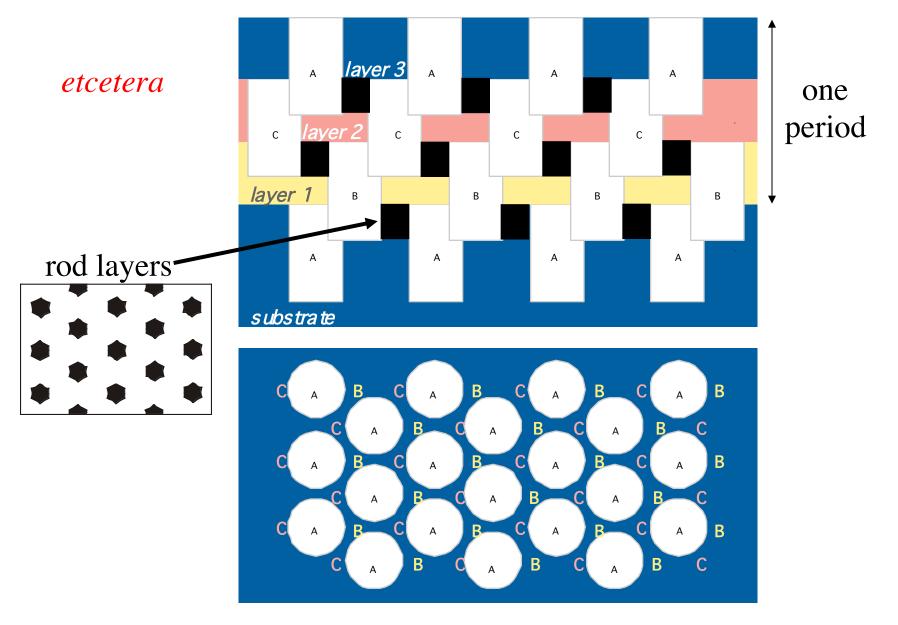
etcetera

(dissolve silica when done)









7-layer E-Beam Fabrication

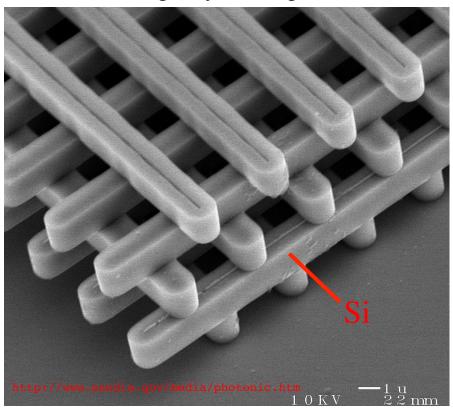


[M. Qi, et al., Nature 429, 538 (2004)]

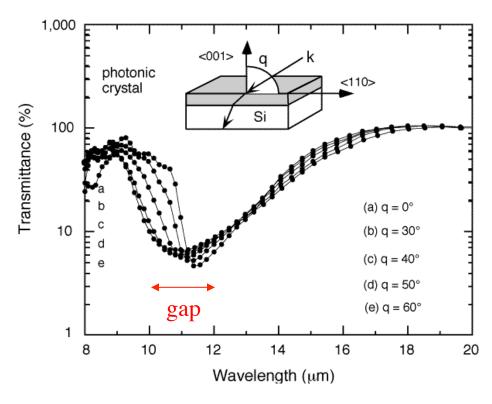
an earlier design: (& currently more popular) The Woodpile Crystal

[K. Ho et al., Solid State Comm. 89, 413 (1994)] [H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994)]

(4 "log" layers = 1 period)

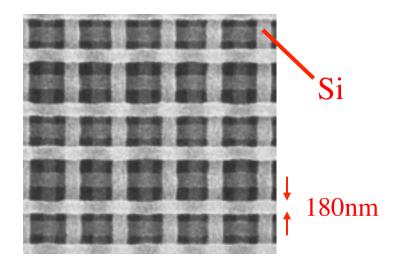


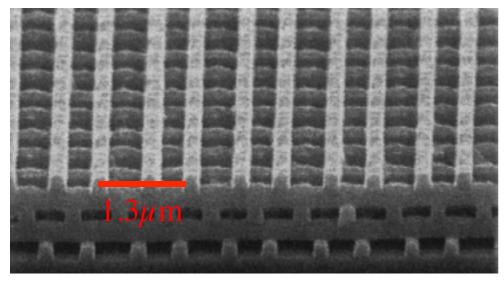
[S. Y. Lin et al., Nature **394**, 251 (1998)]



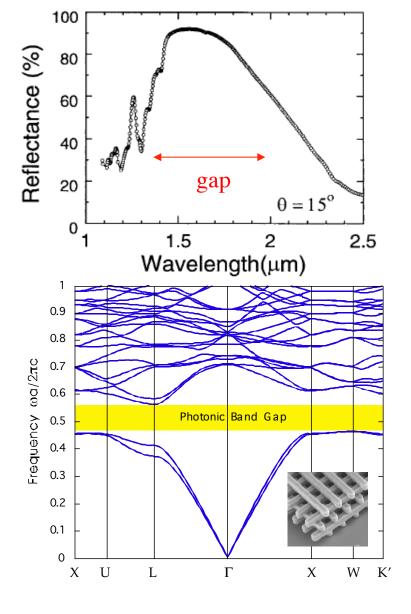
1.25 Periods of Woodpile @ 1.55μm

(4 "log" layers = 1 period)

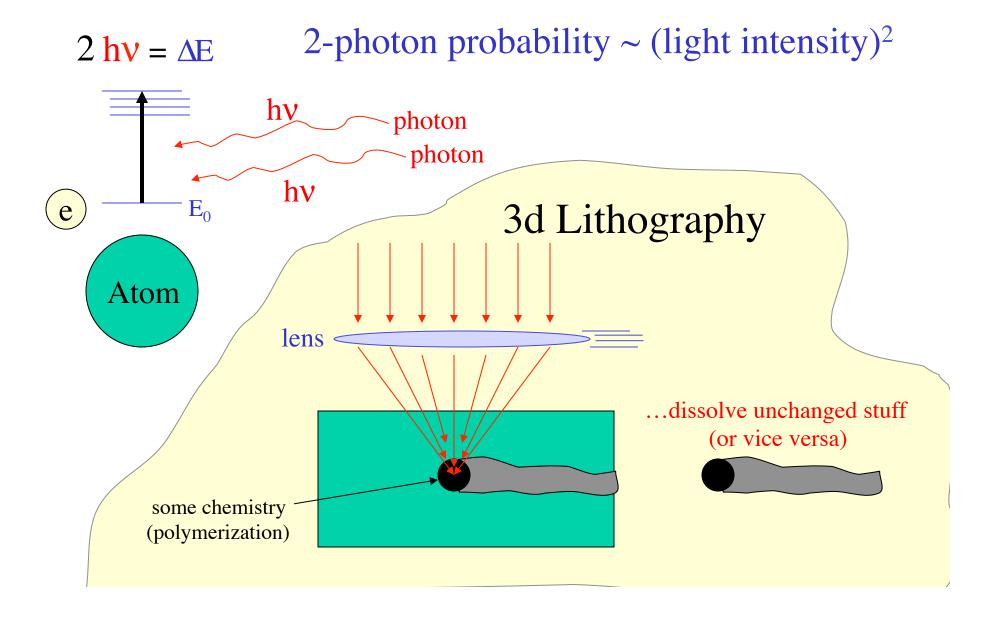




[Lin & Fleming, *JLT* **17**, 1944 (1999)]

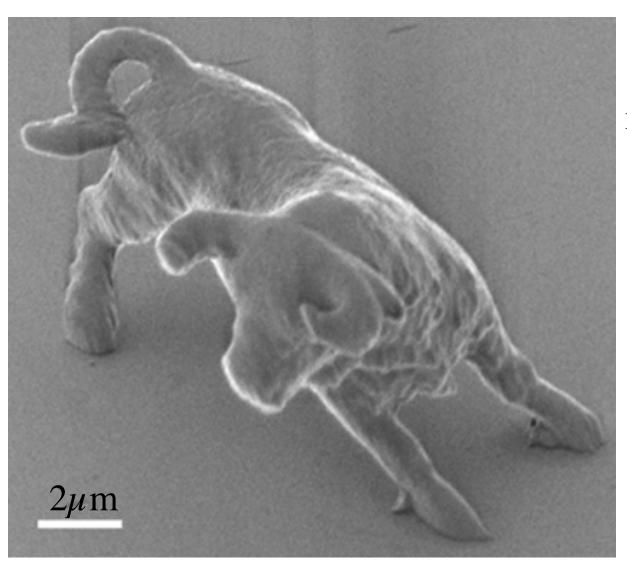


Two-Photon Lithography



Lithography is a Beast

[S. Kawata et al., Nature **412**, 697 (2001)]



 $\lambda = 780$ nm

resolution = 150nm

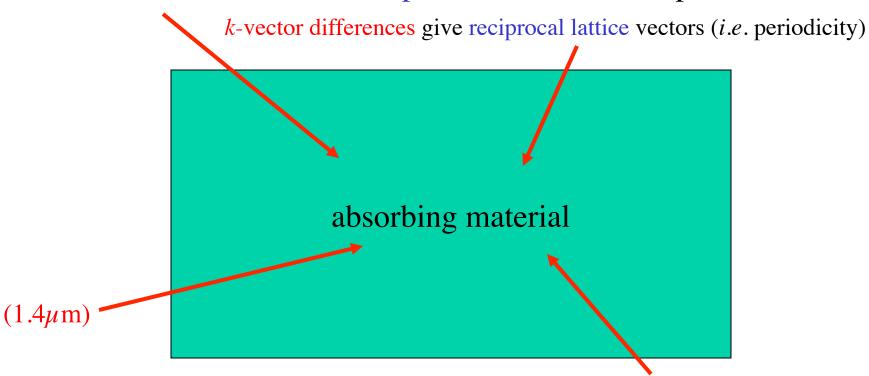
 7μ m

(3 hours to make)

Holographic Lithography

[D. N. Sharp et al., Opt. Quant. Elec. **34**, 3 (2002)]

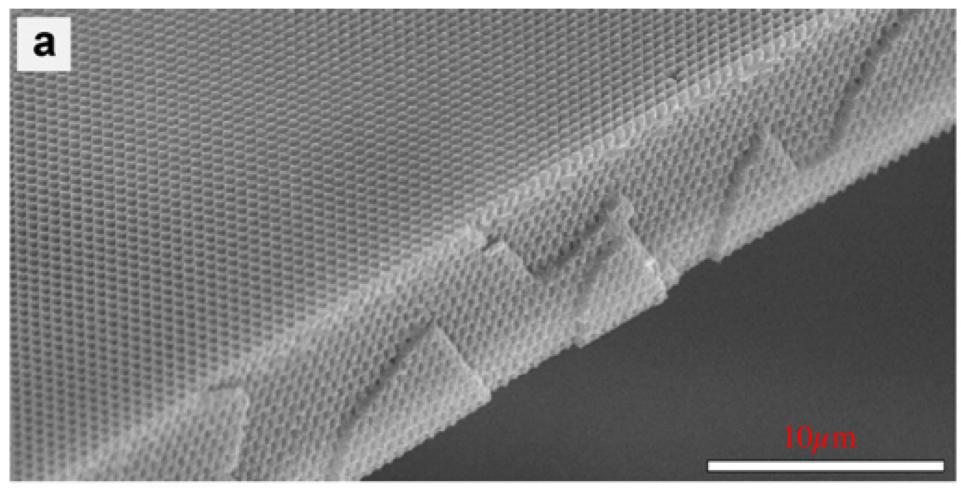
Four beams make 3d-periodic interference pattern



beam polarizations + amplitudes (8 parameters) give unit cell

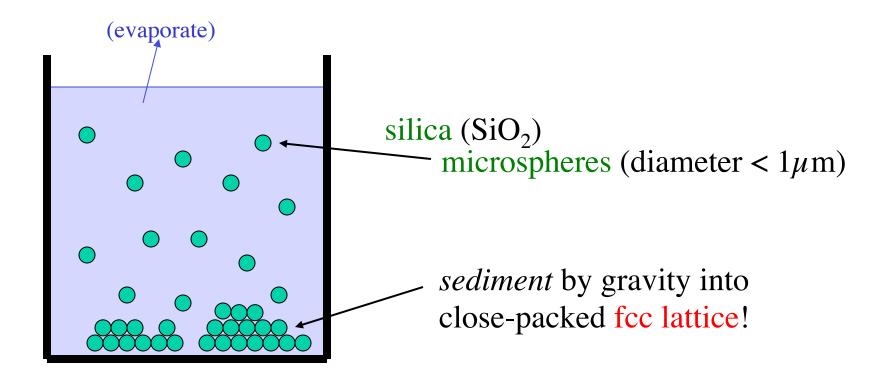
One-Photon

Holographic Lithography [D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002)]

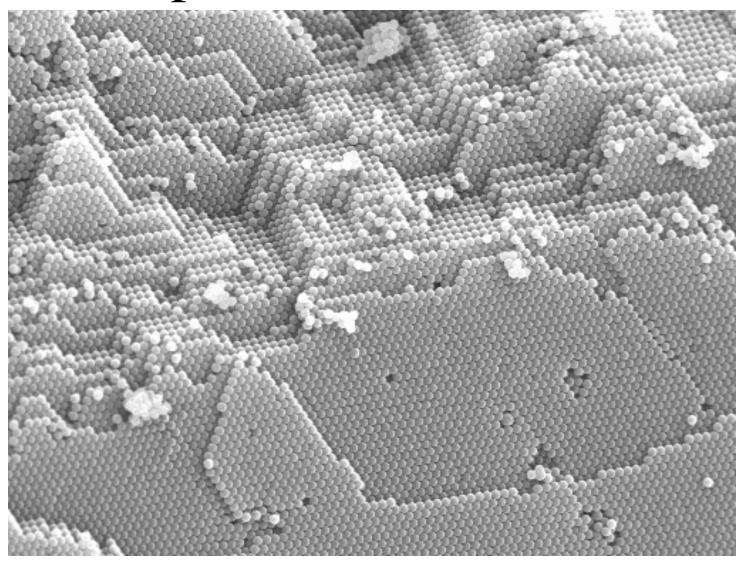


huge volumes, long-range periodic, fcc lattice...backfill for high contrast

Mass-production II: Colloids



Mass-production II: Colloids



http://www.icmm.csic.es/cefe/

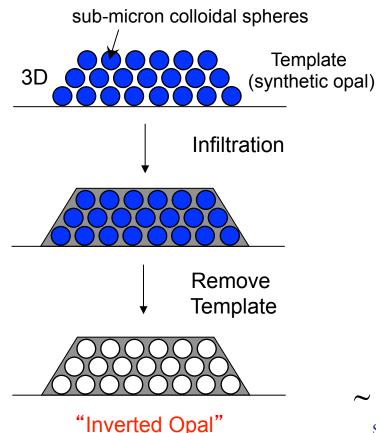
Inverse Opals

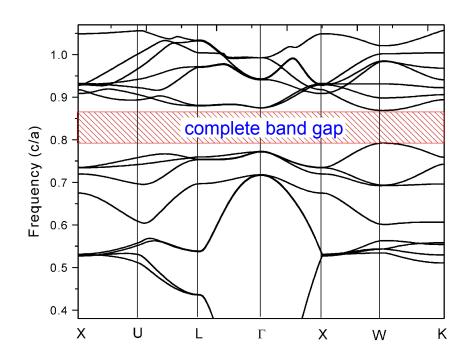
[figs courtesy D. Norris, UMN]

[H. S. Sözüer, *PRB* **45**, 13962 (1992)]

fcc solid spheres do not have a gap...

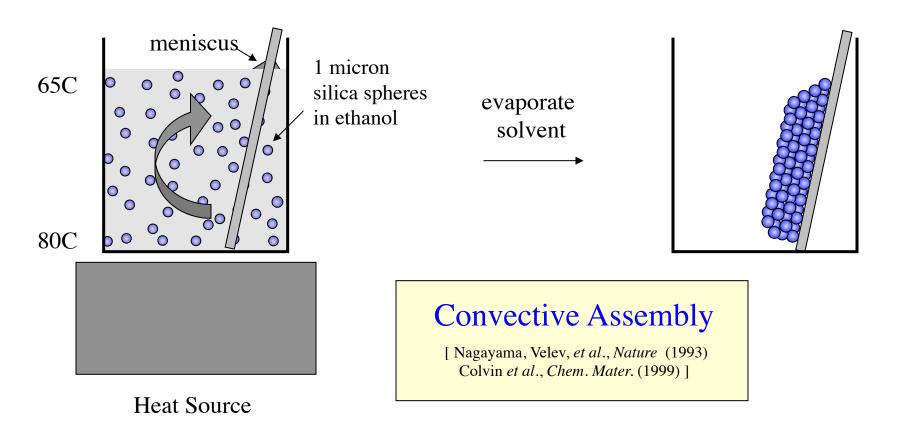
...but fcc spherical holes in Si do have a gap





~ 10% gap between 8th & 9th bands small gap, upper bands: sensitive to disorder

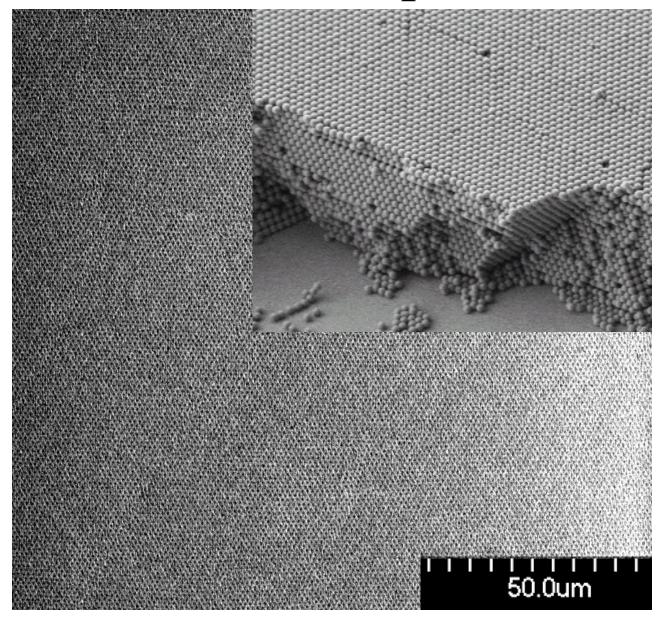
In Order To Form [figs courtesy D. Norris, UMN] a More Perfect Crystal...



- Capillary forces during drying cause assembly in the meniscus
- Extremely flat, large-area opals of controllable thickness

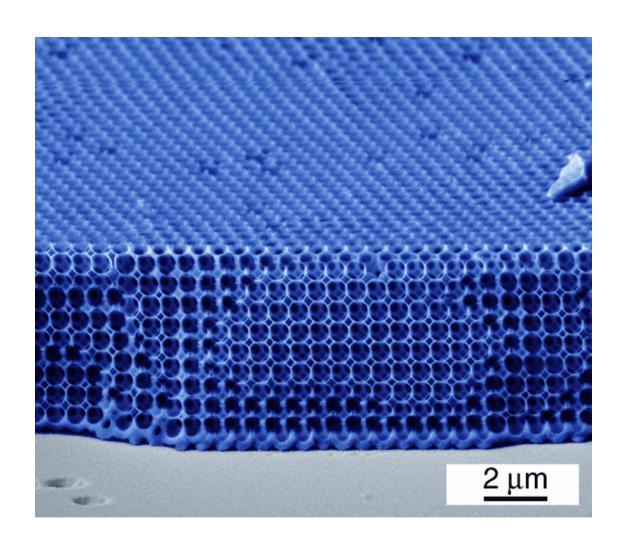
[fig courtesy D. Norris, UMN]

A Better Opal



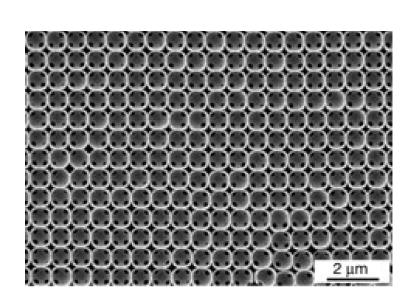
Inverse-Opal Photonic Crystal

[fig courtesy D. Norris, UMN]

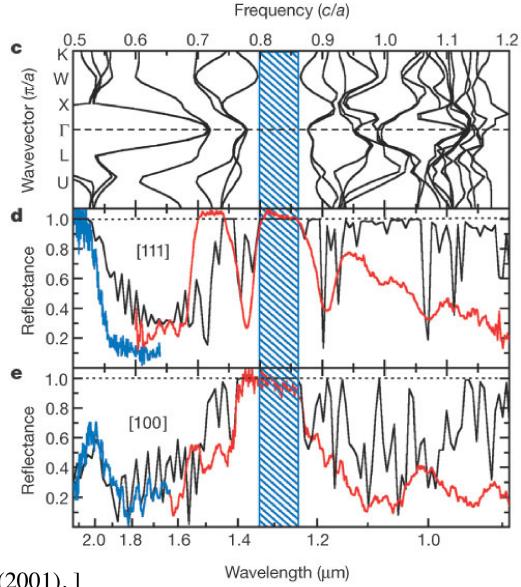


[Y. A. Vlasov et al., Nature 414, 289 (2001).]

Inverse-Opal Band Gap



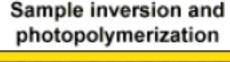
good agreement between **theory** (black) & experiment (red/blue)

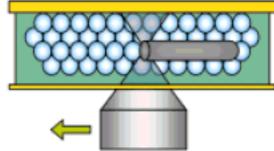


[Y. A. Vlasov et al., Nature **414**, 289 (2001).]

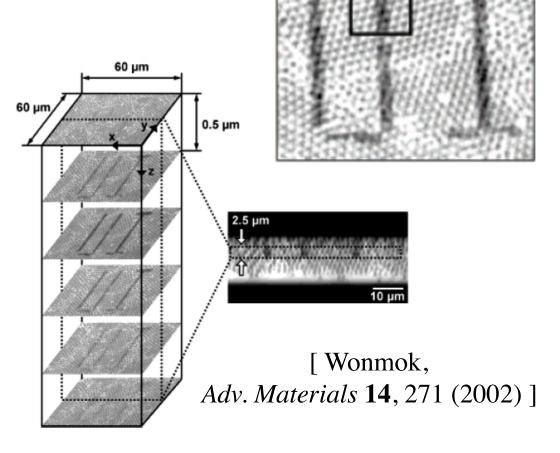
Inserting Defects in Inverse Opals

e.g., Waveguides





Three-photon lithography
with
laser scanning
confocal microscope
(LSCM)

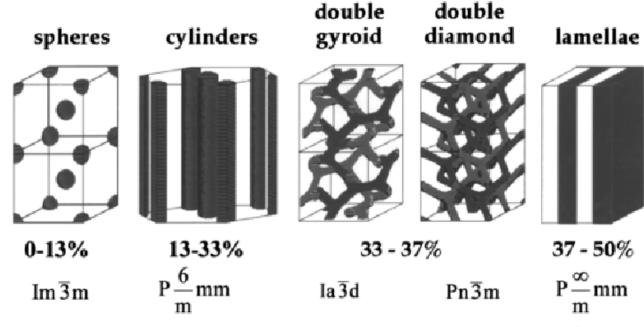


Mass-Production III:

Block (not Bloch) Copolymers

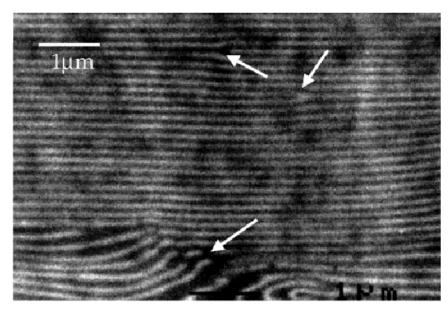
two polymers can segregate, ordering into periodic arrays

periodicity ~
polymer block size
~ 50nm
(possibly bigger)



increasing volume fraction of minority phase polymer

Block-Copolymer 1d Visible Bandgap

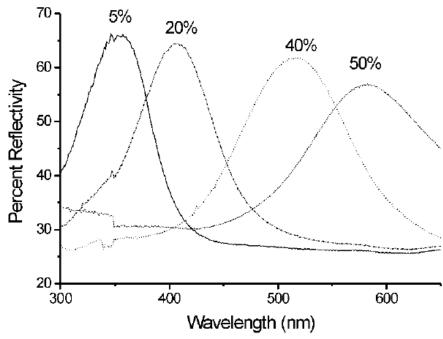


dark/light: polystyrene/polyisoprene

n = 1.59/1.51

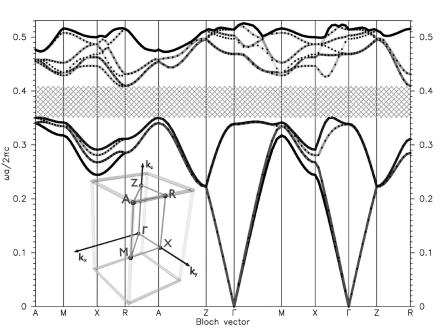
Flexible material: bandgap can be shifted by stretching it!

reflection for differing homopolymer %



[A. Urbas et al., Advanced Materials 12, 812 (2000)]

Be GLAD: Even more crystals! "GLAD" = "GLancing Angle Deposition"

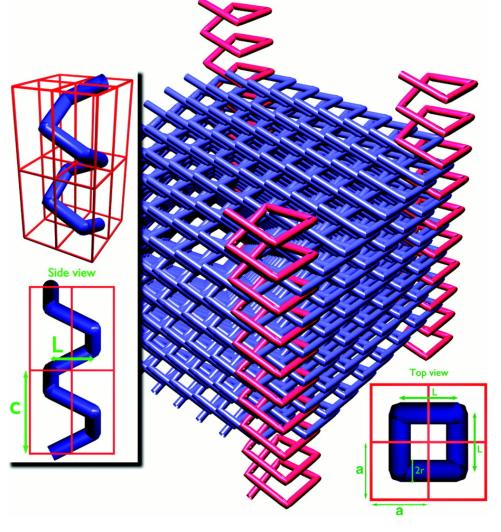


15% gap for Si/air

diamond-like

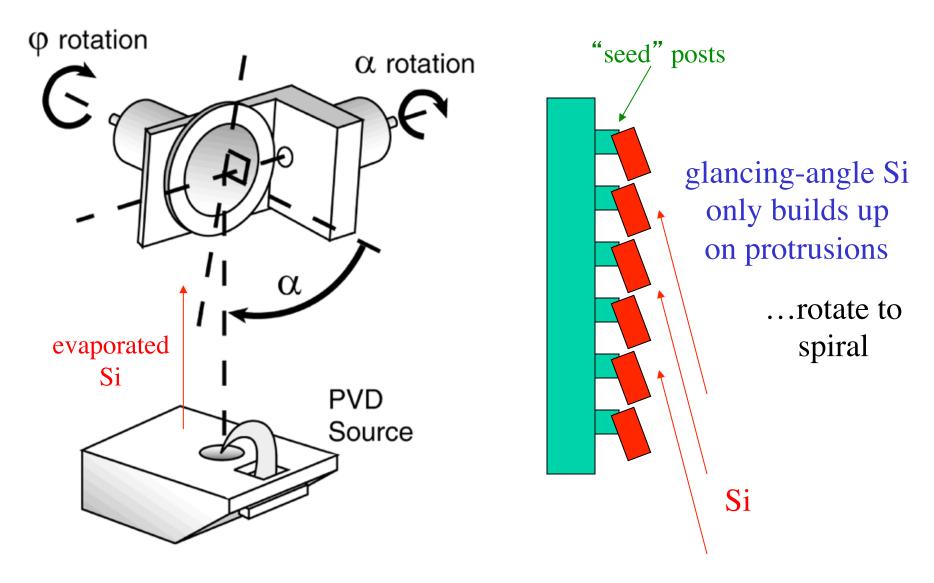
with "broken bonds"

doubled unit cell, so gap between 4th & 5th bands



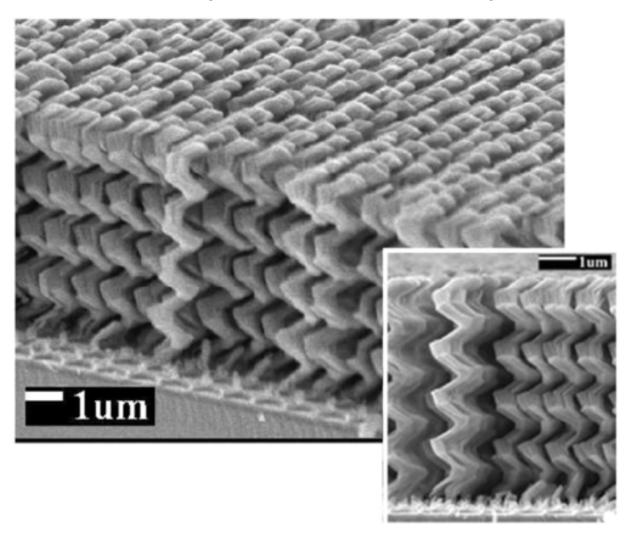
[O. Toader and S. John, *Science* **292**, 1133 (2001)]

Glancing Angle Deposition



[S. R. Kennedy et al., Nano Letters 2, 59 (2002)]

An Early GLAD Crystal

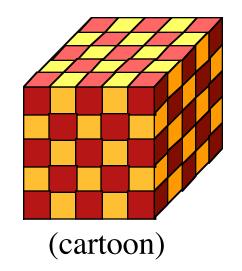


Outline

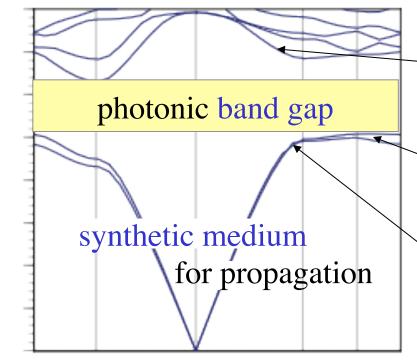
- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Properties of Bulk Crystals

by Bloch's theorem



band diagram (dispersion relation)



conserved frequency w

backwards slope:

negative refraction

 $d\omega/dk \approx 0$: slow light (e.g. DFB lasers)

strong curvature:

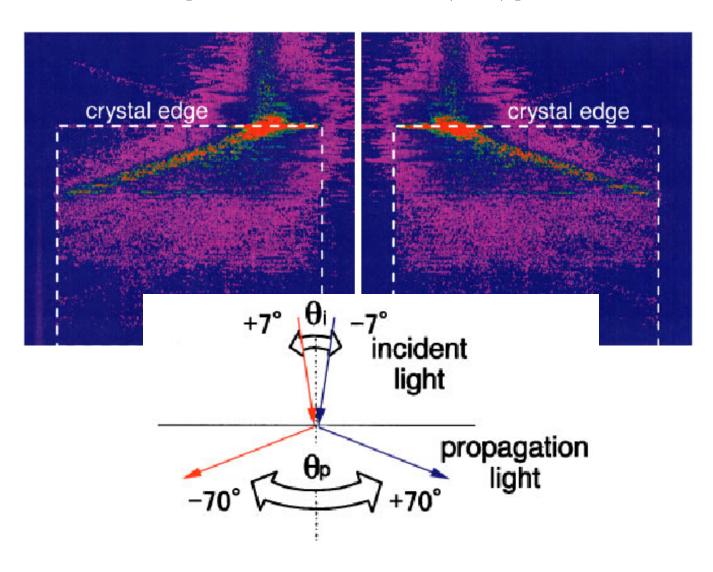
super-prisms, ...

(+ negative refraction)

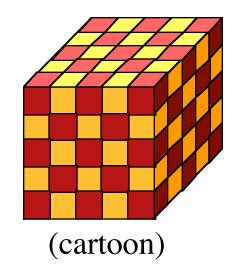
conserved wavevector k

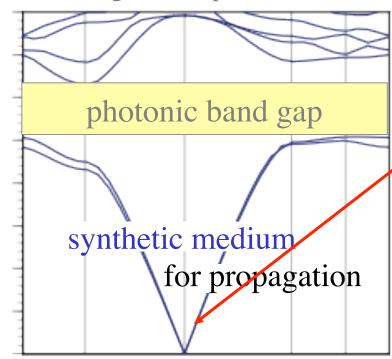
Superprisms from divergent dispersion (band curvature)

[Kosaka, PRB 58, R10096 (1998).]



Photonic Crystals & Metamaterials





conserved frequency w

at small ω

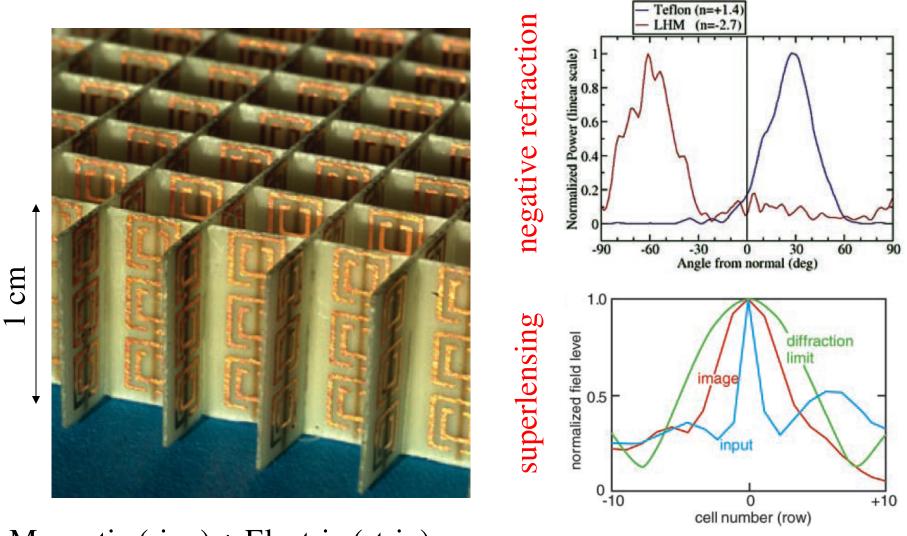
(long wavelengths $\lambda >> a$) $\omega(k) \sim \text{straight line}$ $\sim \text{effectively homogeneous}$ material

= metamaterials

conserved wavevector k

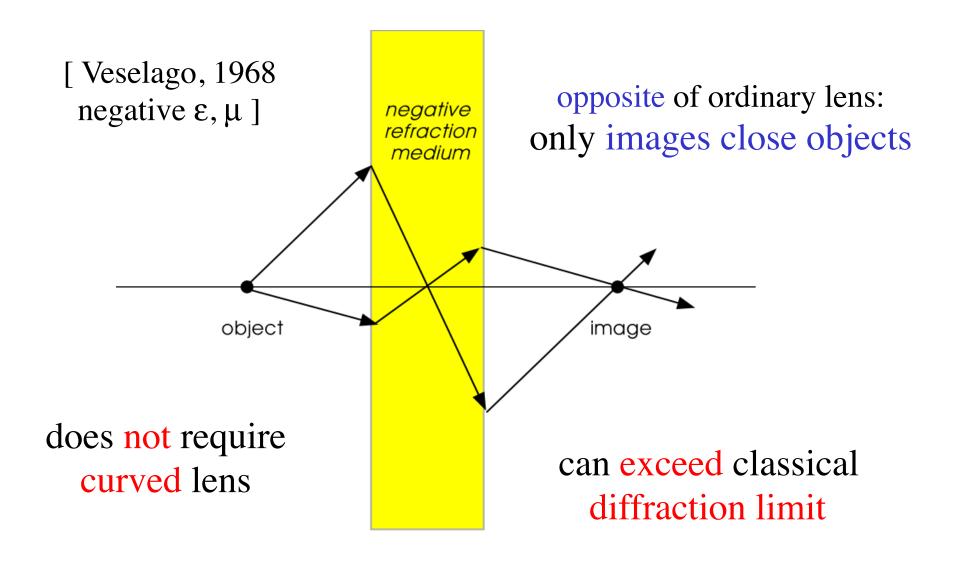
Microwave negative refraction

[D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, *Science* **305**, 788 (2004)]



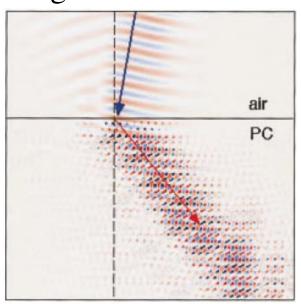
Magnetic (ring) + Electric (strip) resonances

Negative Indices & Refraction

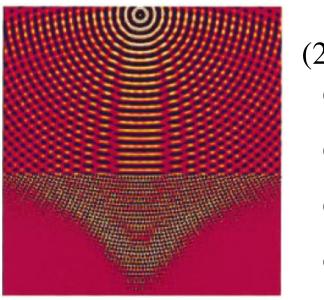


Negative-refractive all-dielectric photonic crystals

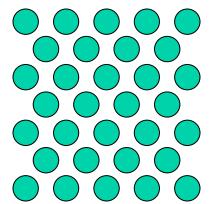
negative refraction



focussing



(2d rods in air, TE)



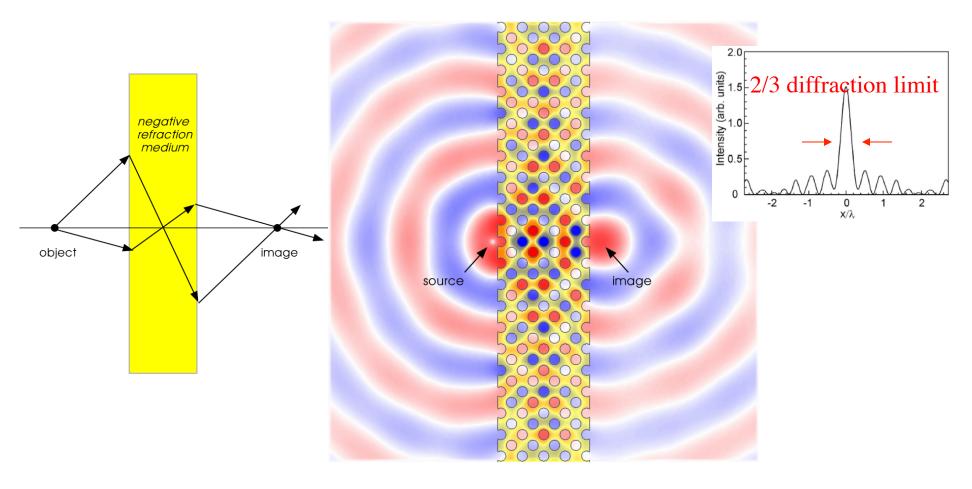
[M. Notomi, *PRB* **62**, 10696 (2000).]

not metamaterials: wavelength $\sim a$,

no homogeneous material can reproduce all behaviors

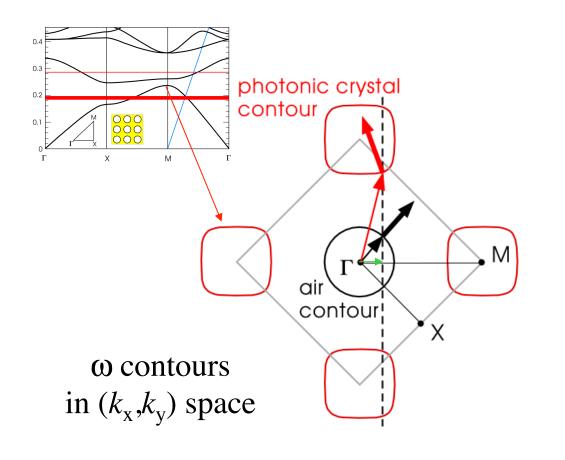
Superlensing with Photonic Crystals

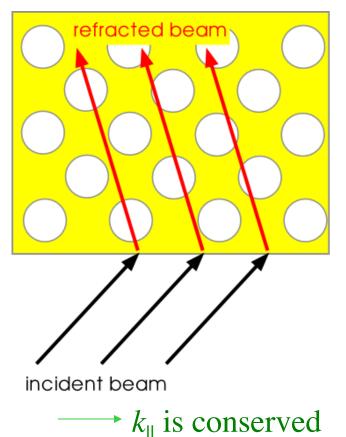
[Luo et al, PRB 68, 045115 (2003).]



Negative Refraction and wavevector diagrams

[Luo et al, PRB 65, 2001104 (2002).]



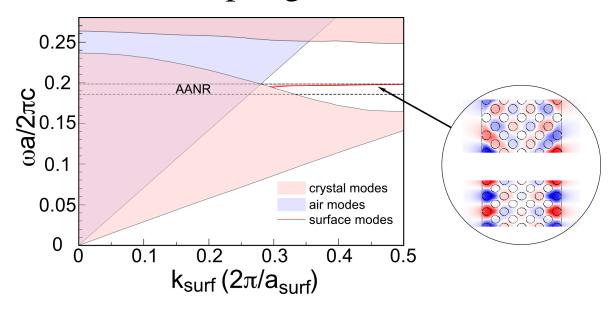


Super-lensing

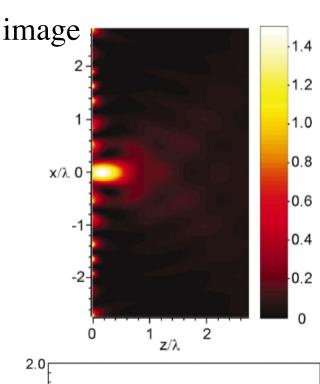
[Luo, PRB 68, 045115 (2003).]

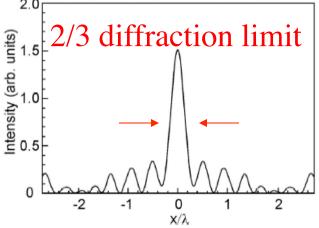
Classical diffraction limit comes from loss of evanescent waves

... can be recovered by resonant coupling to surface states



(needs band gap)

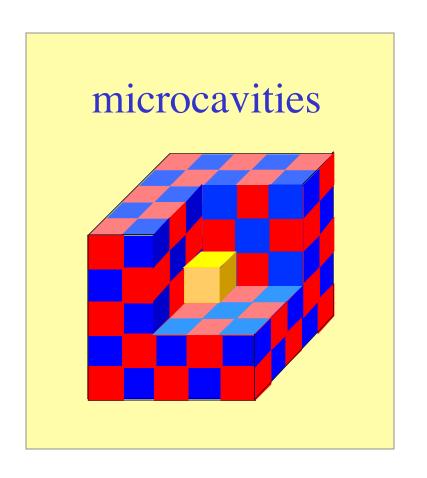




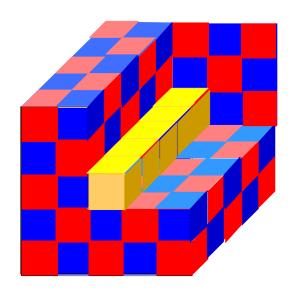
Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Intentional "defects" are good



waveguides ("wires")

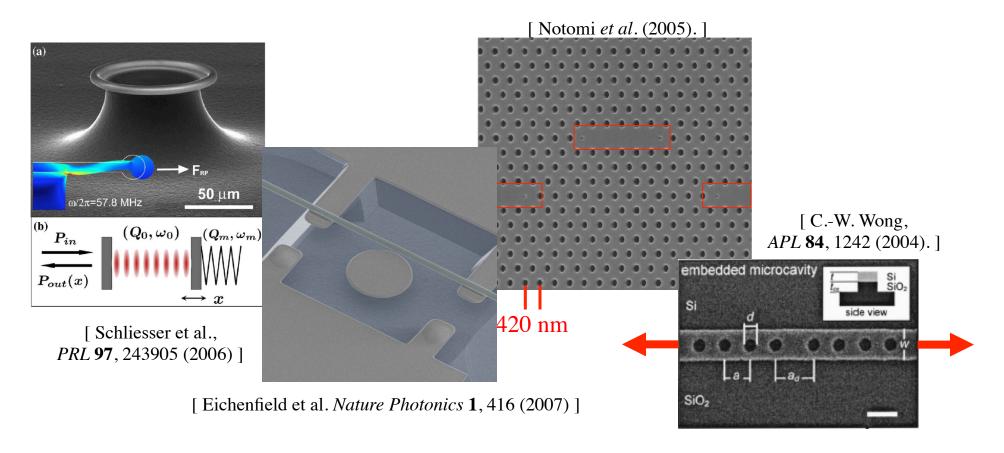


Resonance

an oscillating mode trapped for a long time in some volume (of light, sound, ...) lifetime $\tau >> 2\pi/\omega_0$

frequency ω_0

quality factor $Q = \omega_0 \tau/2$ energy $\sim e^{-\omega_0 t/Q}$ modal volume V



Why Resonance?

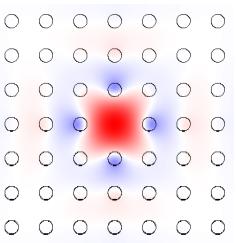
an oscillating mode trapped for a long time in some volume

- long time = narrow bandwidth ... filters (WDM, etc.)
 - -1/Q = fractional bandwidth
- resonant processes allow one to "impedance match" hard-to-couple inputs/outputs
- long time, small V ... enhanced wave/matter interaction
 - lasers, nonlinear optics, opto-mechanical coupling, sensors, LEDs, thermal sources, ...

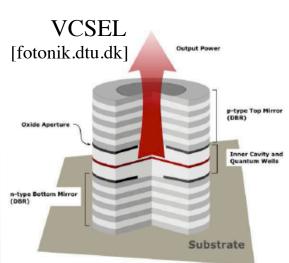
How Resonance?

need mechanism to trap light for long time

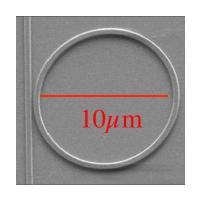
[llnl.gov]



metallic cavities: good for microwave, dissipative for infrared



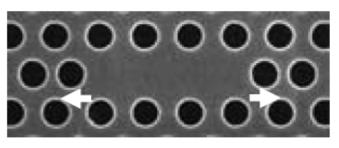
photonic bandgaps
 (complete or partial
 + index-guiding)



[Xu & Lipson (2005)]

ring/disc/sphere resonators: a waveguide bent in circle, bending loss ~ exp(-radius)

[Akahane, *Nature* **425**, 944 (2003)]

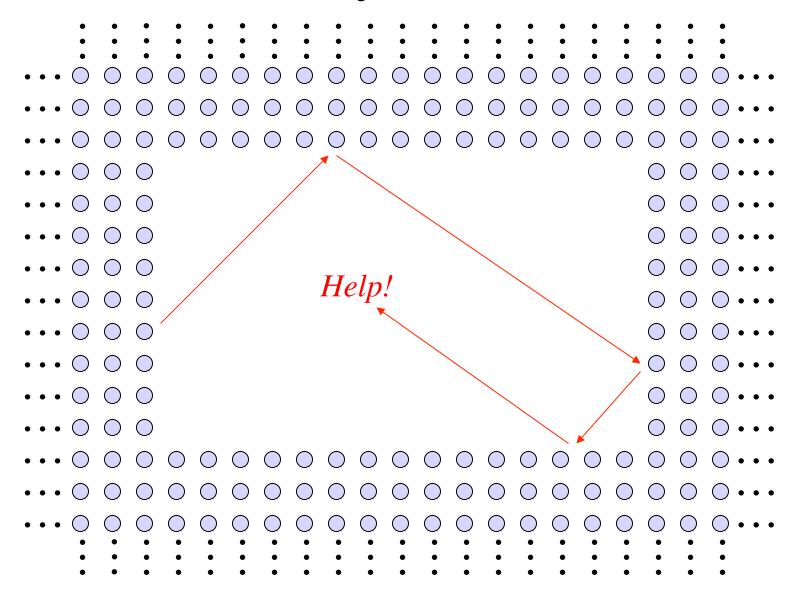


(planar Si slab)

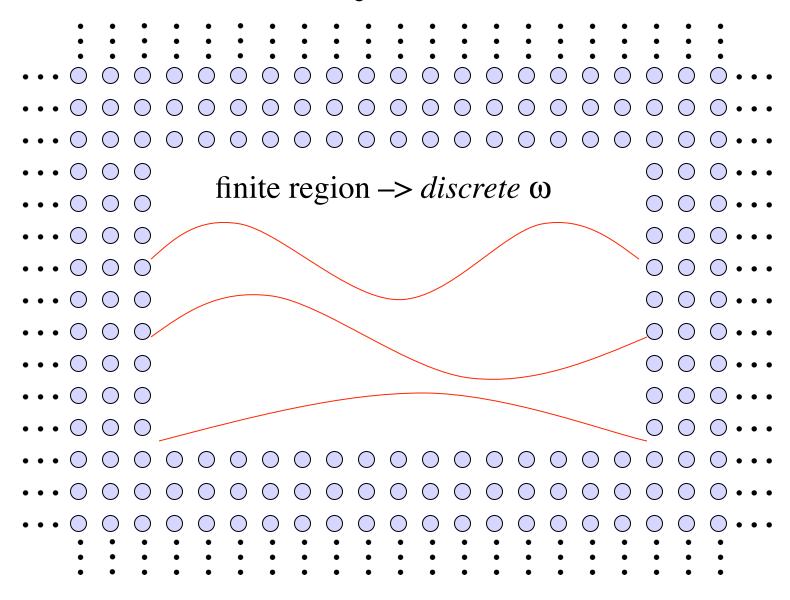
Why do defects in crystals trap resonant modes?

What do the modes look like?

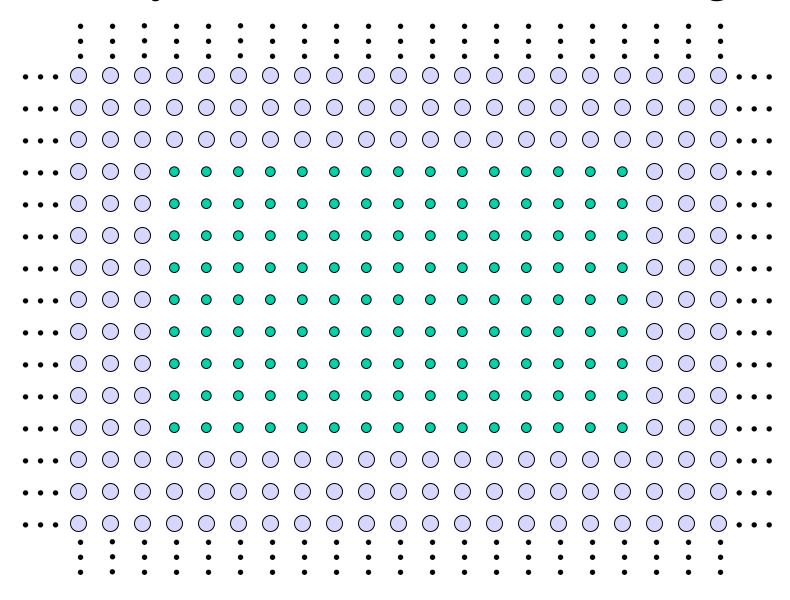
Cavity Modes



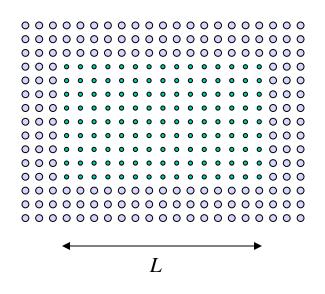
Cavity Modes

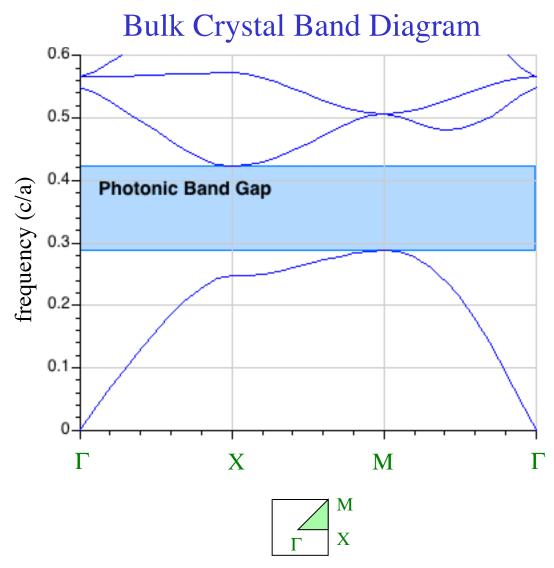


Cavity Modes: Smaller Change

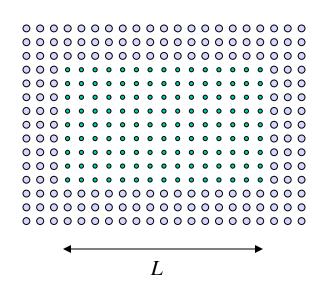


Cavity Modes: Smaller Change





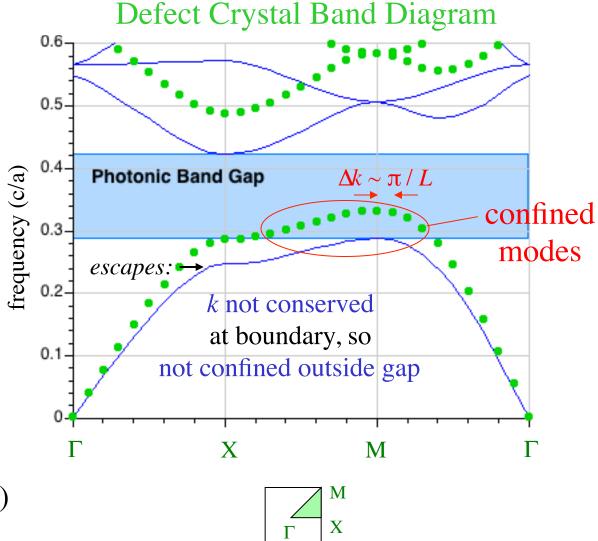
Cavity Modes: Smaller Change



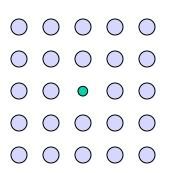
Defect bands are shifted up (less ε)

with discrete k

$$\# \cdot \frac{\lambda}{2} \sim L \quad (k \sim 2\pi/\lambda)$$

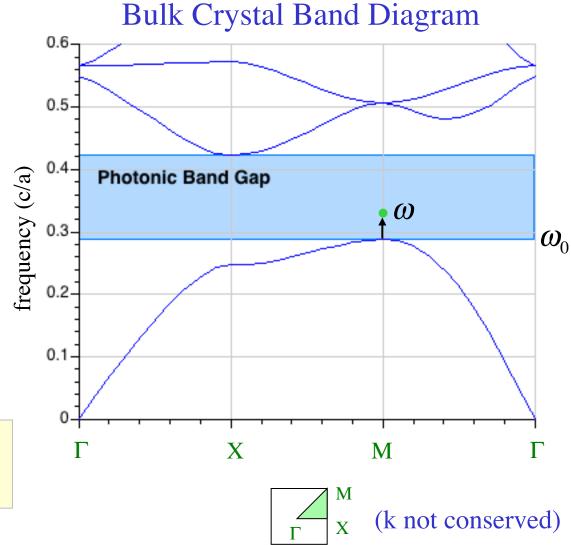


Single-Mode Cavity

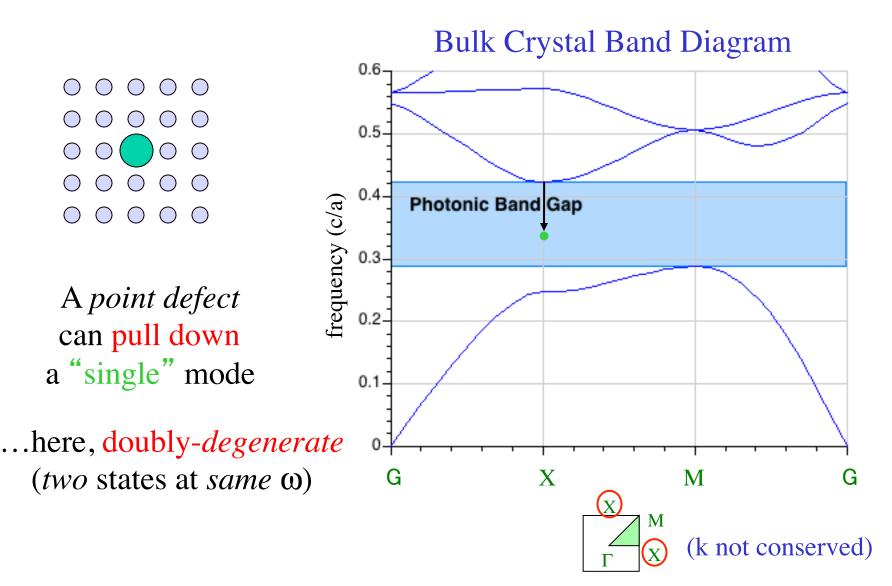


A point defect
can push up
a single mode
from the band edge

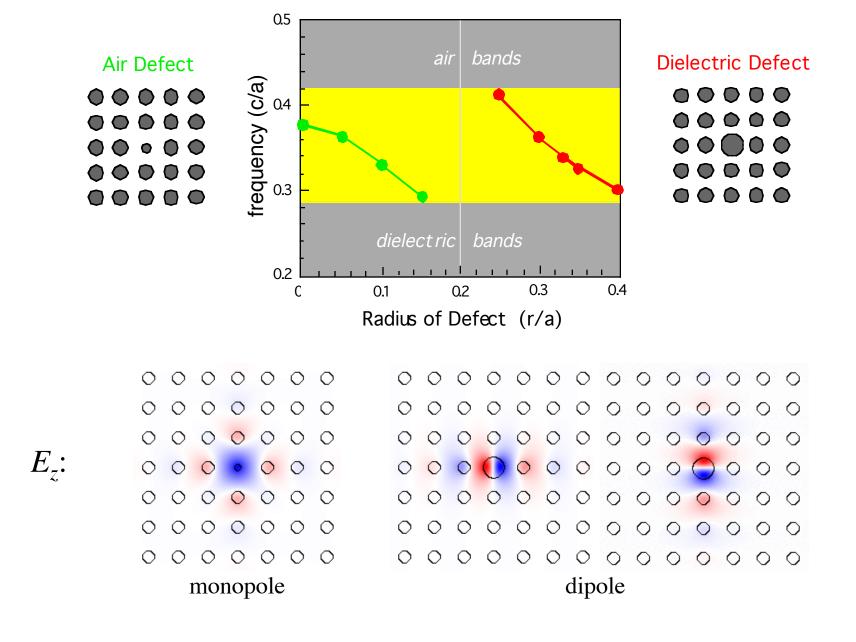
field decay
$$\sim \sqrt{\frac{\omega - \omega_0}{\text{curvature}}}$$



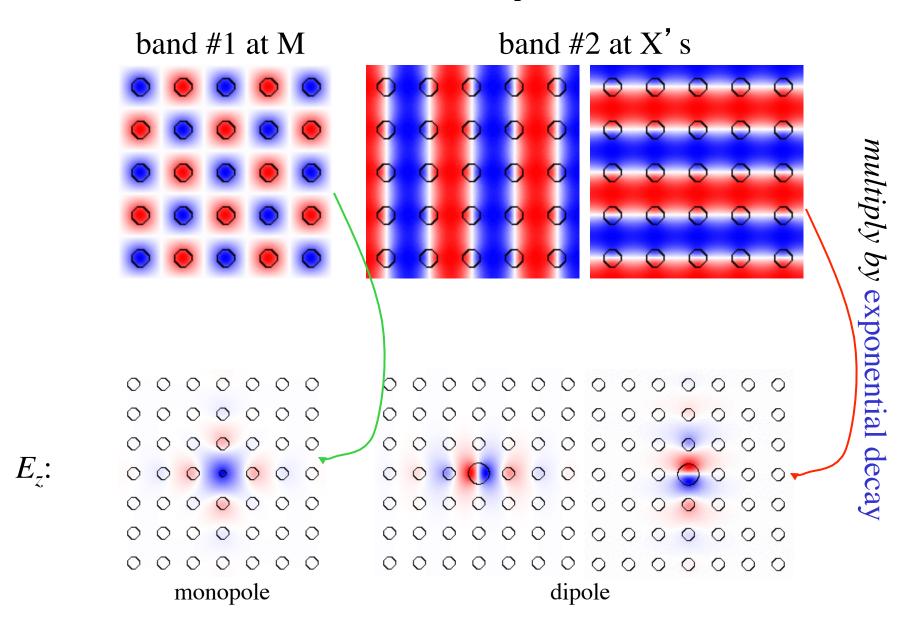
"Single"-Mode Cavity



Tunable Cavity Modes

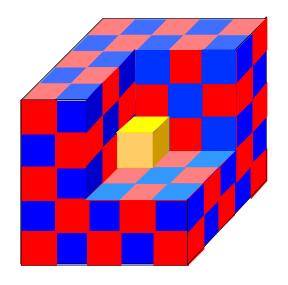


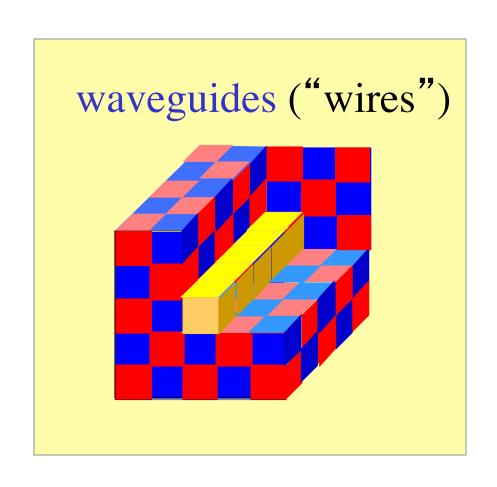
Tunable Cavity Modes



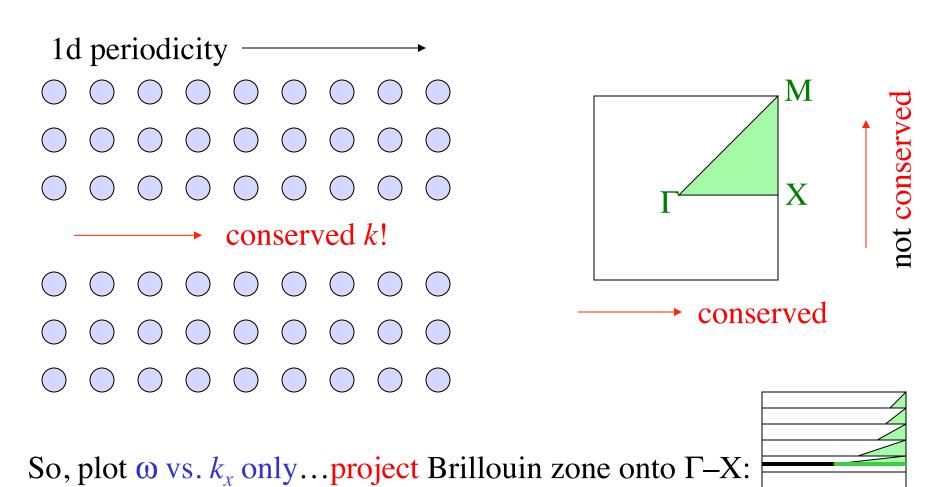
Intentional "defects" are good

microcavities



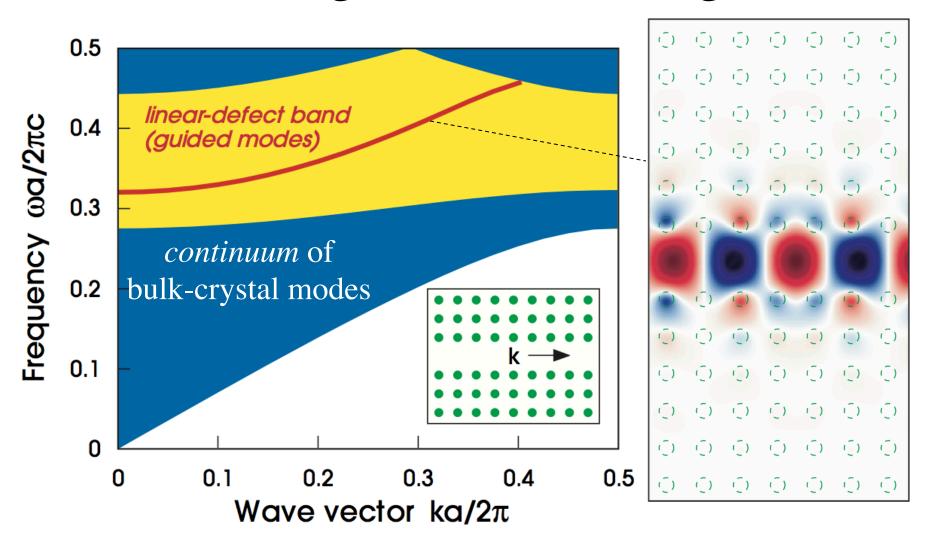


Projected Band Diagrams



gives continuum of bulk states + discrete guided band(s)

Air-waveguide Band Diagram



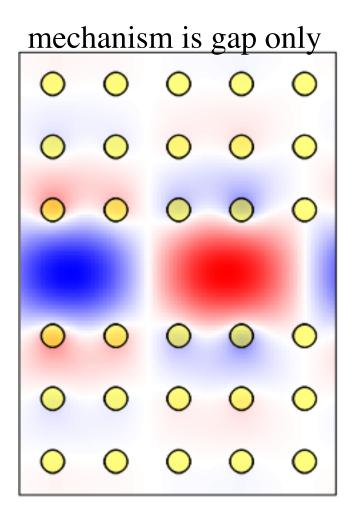
any state in the gap cannot couple to bulk crystal ⇒ localized

(Waveguides don't really need a complete gap)

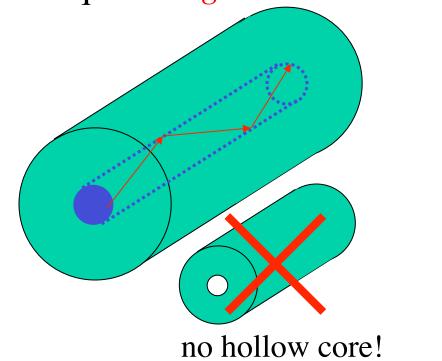
Fabry-Perot waveguide:			
			_
			→
			→

This is exploited *e.g.* for photonic-crystal fibers...

Guiding Light in Air!

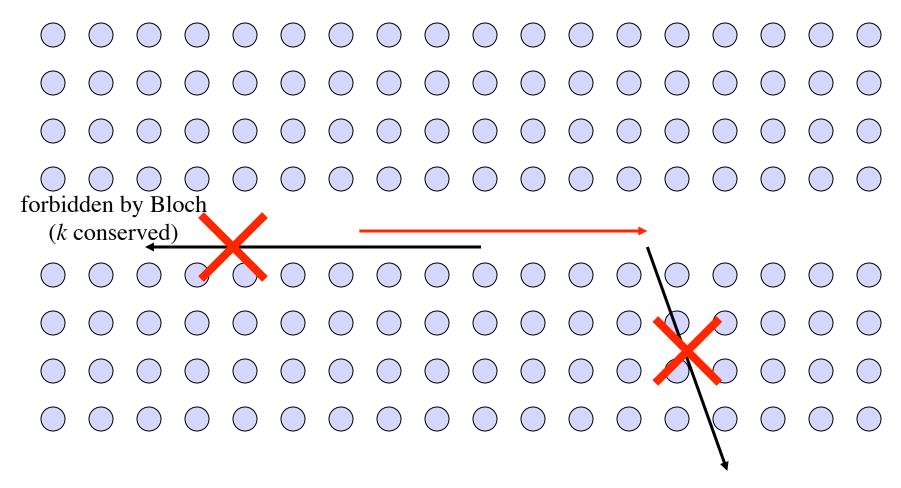


vs. standard optical fiber:
 "total internal reflection"
 — requires higher-index core



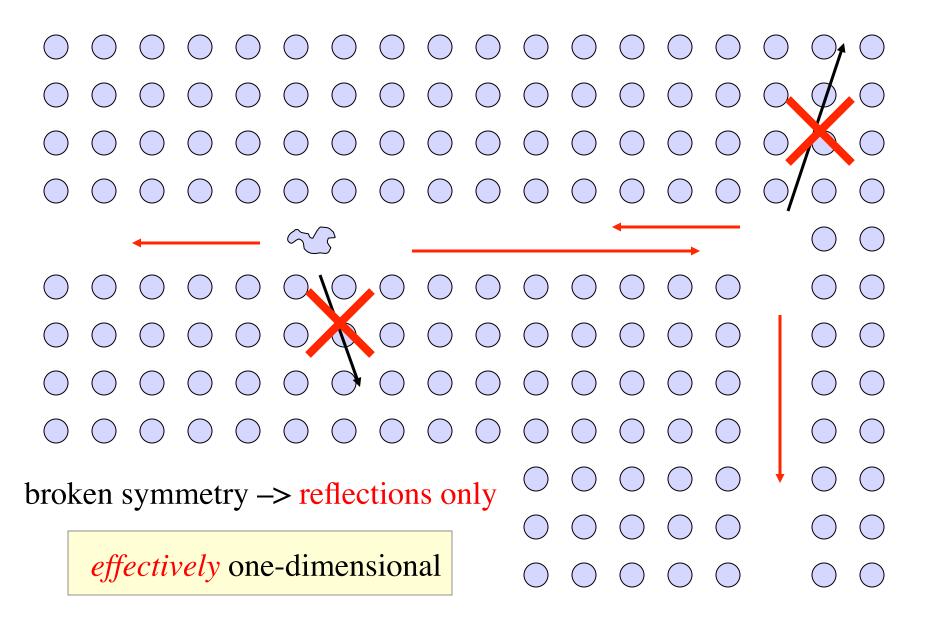
hollow = lower absorption, lower nonlinearities, higher power

Review: Why no scattering?

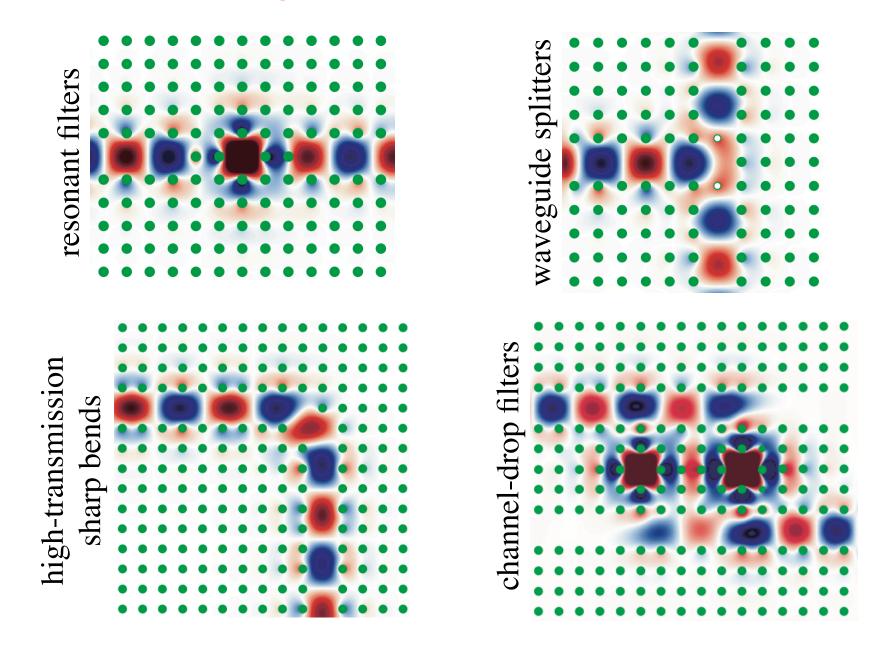


forbidden by gap (except for finite-crystal tunneling)

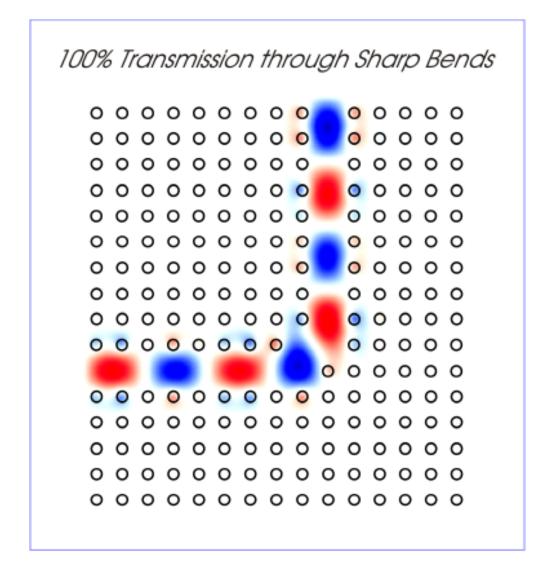
Benefits of a complete gap...

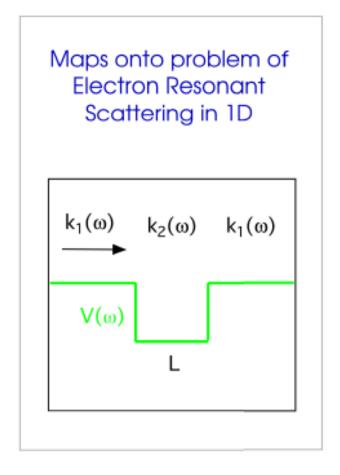


"1d" Waveguides + Cavities = Devices



Lossless Bends

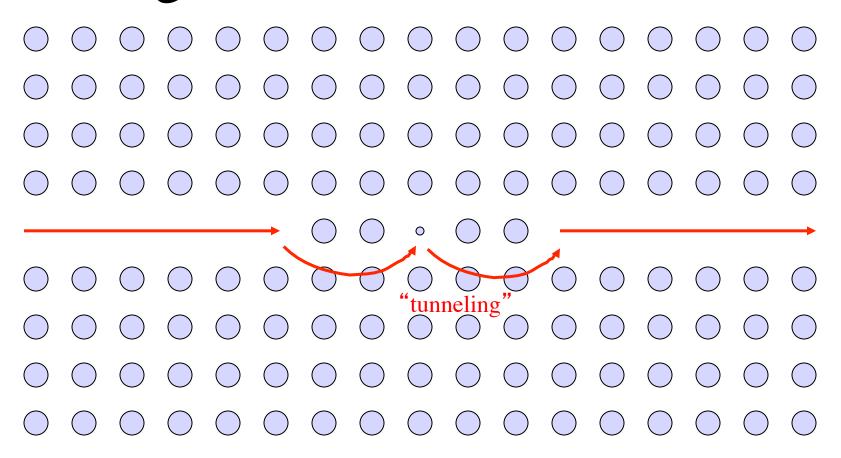




[A. Mekis *et al.*, *Phys. Rev. Lett.* **77**, 3787 (1996)]

symmetry + single-mode + "1d" = resonances of 100% transmission

Waveguides + Cavities = Devices



Ugh, must we simulate this to get the basic behavior?

Temporal Coupled-Mode Theory

(one of several things called of "coupled-mode theory")

[H. Haus, Waves and Fields in Optoelectronics]

input
$$s_{1-}$$
 output s_{2-} output s_{2-} resonant cavity frequency ω_0 , lifetime τ $|s|^2 = \text{power}$ $|a|^2 = \text{energy}$

$$\frac{da}{dt} = -i\omega_0 a - \frac{2}{\tau}a + \sqrt{\frac{2}{\tau}}s_{1+}$$

$$s_{1-} = -s_{1+} + \sqrt{\frac{2}{\tau}}a, \quad s_{2-} = \sqrt{\frac{2}{\tau}}a$$

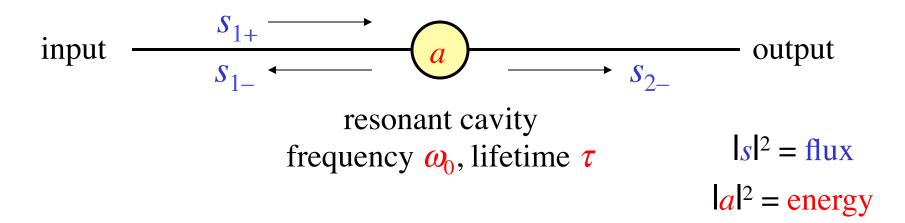
assumes only:

- exponential decay (strong confinement)
- conservation of energy
- time-reversal symmetry

Temporal Coupled-Mode Theory

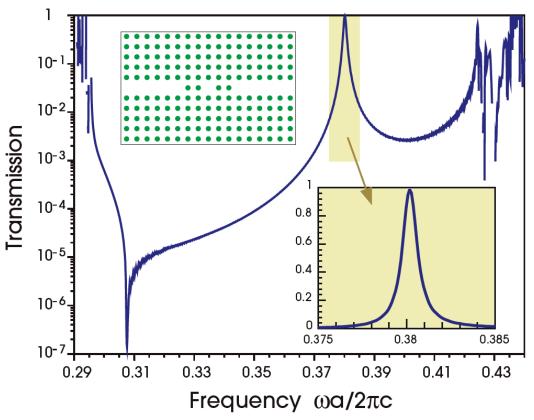
(one of several things called of "coupled-mode theory")

[H. Haus, Waves and Fields in Optoelectronics]



transmission T $= |s_{2-}|^2 / |s_{1+}|^2$ $= |s_{2-}|^2 / |s_{2-}|^2 / |s_{2-}|^2$ $= |s_{2-}|^2 / |s_{2-}|^2 / |s_{2-}|^2 / |s_{2-}|^2$ $= |s_{2-}|^2 / |s_{2$

Resonant Filter Example



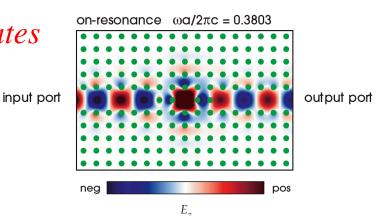
Lorentzian peak, as predicted.

An apparent miracle:

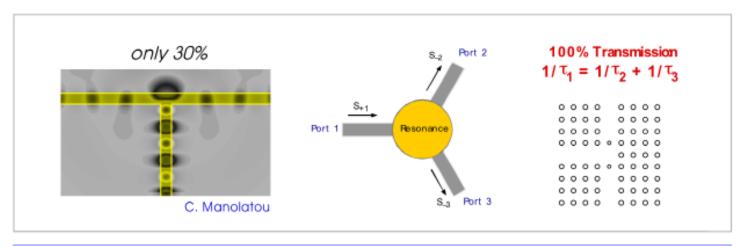
~ 100% transmission at the resonant frequency

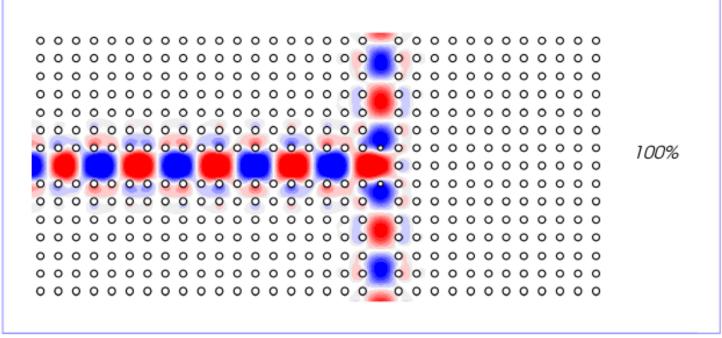
cavity decays to input/output with equal rates

⇒ At resonance, reflected wave destructively interferes with backwards-decay from cavity & the two exactly cancel.



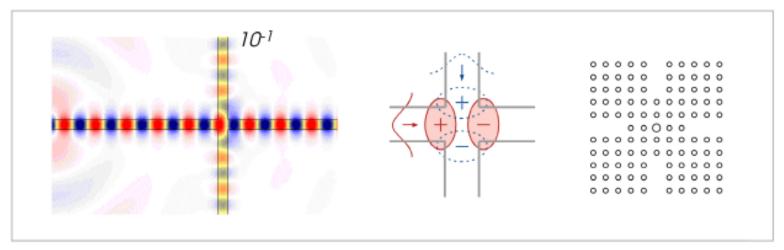
Wide-angle Splitters

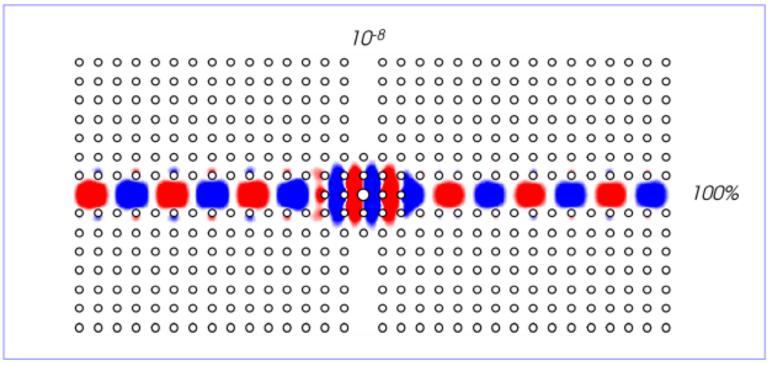




[S. Fan et al., J. Opt. Soc. Am. B 18, 162 (2001)]

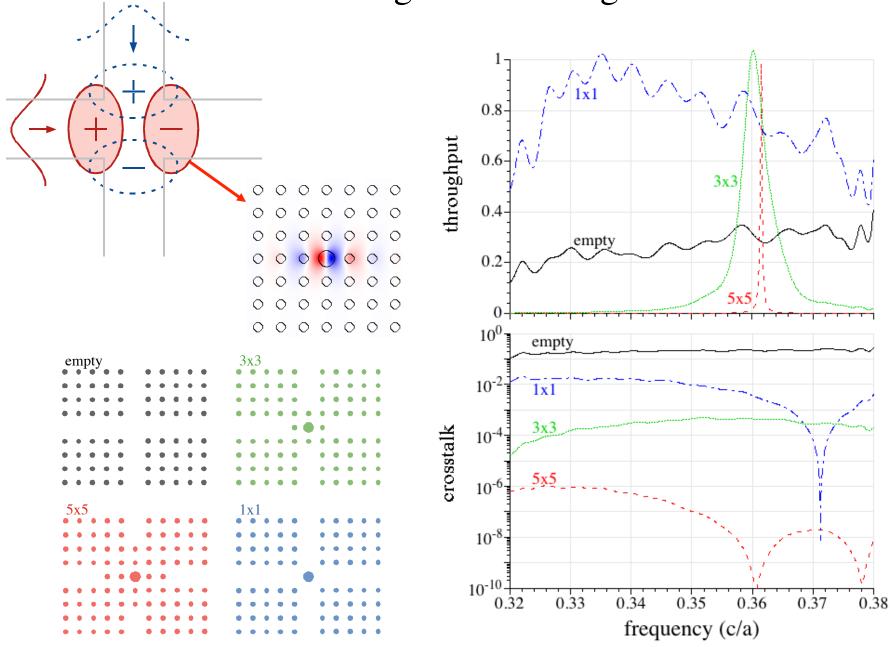
Waveguide Crossings



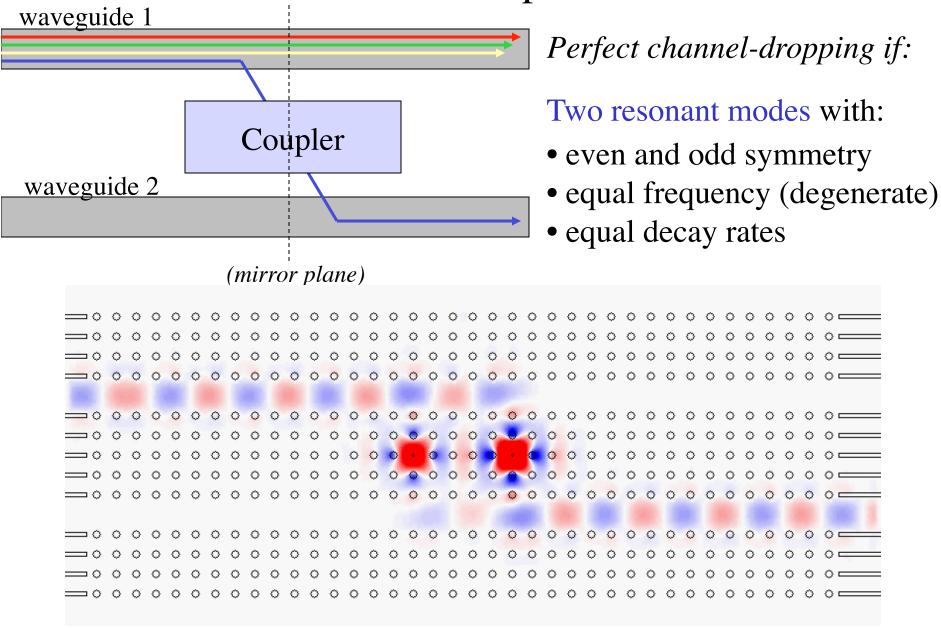


[S. G. Johnson *et al.*, *Opt. Lett.* **23**, 1855 (1998)]

Waveguide Crossings



Channel-Drop Filters



[S. Fan et al., Phys. Rev. Lett. **80**, 960 (1998)]

Enough passive, linear devices...

```
Photonic crystal cavities:
```

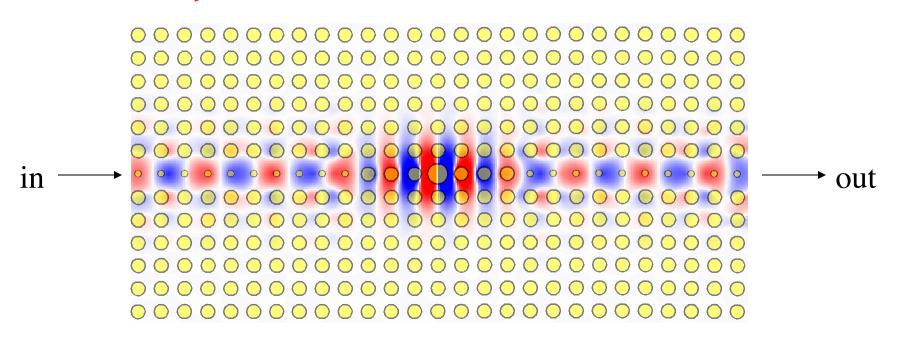
tight confinement ($\sim \lambda/2$ diameter)

+ long lifetime (high *Q* independent of size)

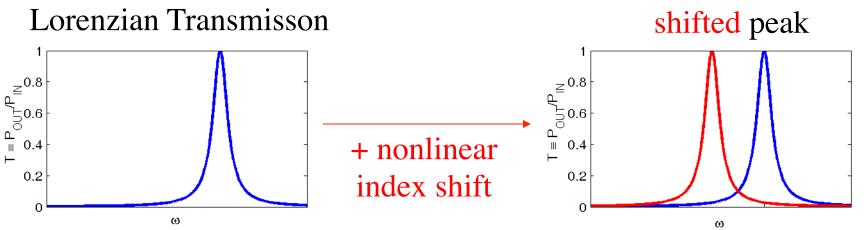
= enhanced nonlinear effects

e.g. Kerr nonlinearity, $\Delta n \sim \text{intensity}$

A Linear Nonlinear Filter

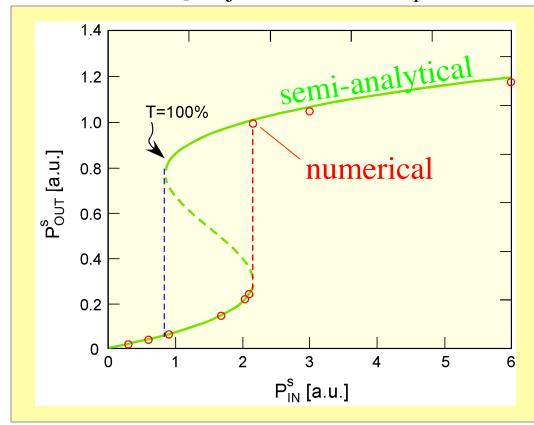


Linear response:

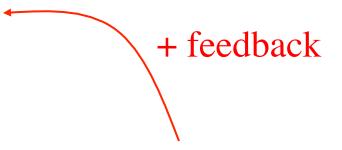


A Linear Nonlinear "Transistor"

[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]



Logic gates, switching, rectifiers, amplifiers, isolators, ...



shifted peak

Bistable (hysteresis) response

Power threshold $\sim V/Q^2$ is near optimal (\sim mW for Si and telecom bandwidth)

TCMT for Bistability

[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

input
$$s_{1+}$$
 output

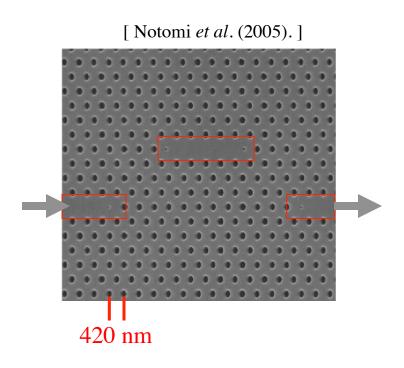
resonant cavity
frequency ω_0 , lifetime τ ,

SPM coefficient $\alpha \sim \chi^{(3)}$

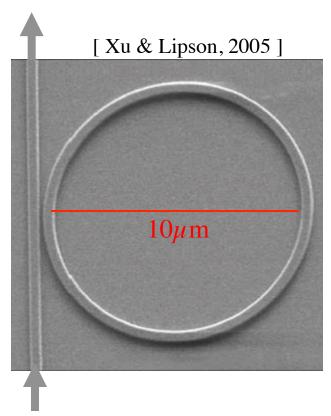
(computed from perturbation theory)

$$\frac{da}{dt} = -i(\omega_0 - |\alpha|^2)a - \frac{2}{\tau}a + \sqrt{\frac{2}{\tau}}s_{1+}$$
gives cubic equation
$$s_{1-} = -s_{1+} + \sqrt{\frac{2}{\tau}}a, \quad s_{2-} = \sqrt{\frac{2}{\tau}}a$$
gives cubic equation
for transmission
... bistable curve

Experimental Nonlinear Switches



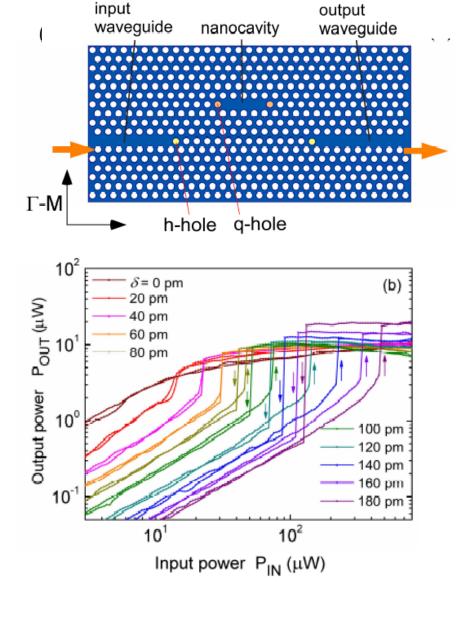
Q ~ 30,000 V ~ 10 optimum Power threshold ~ 40 μ W

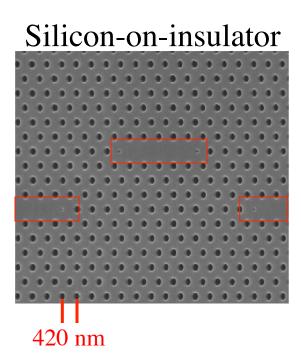


 $Q \sim 10,000$ V ~ 300 optimum Power threshold ~ 10 mW

Experimental Bistable Switch

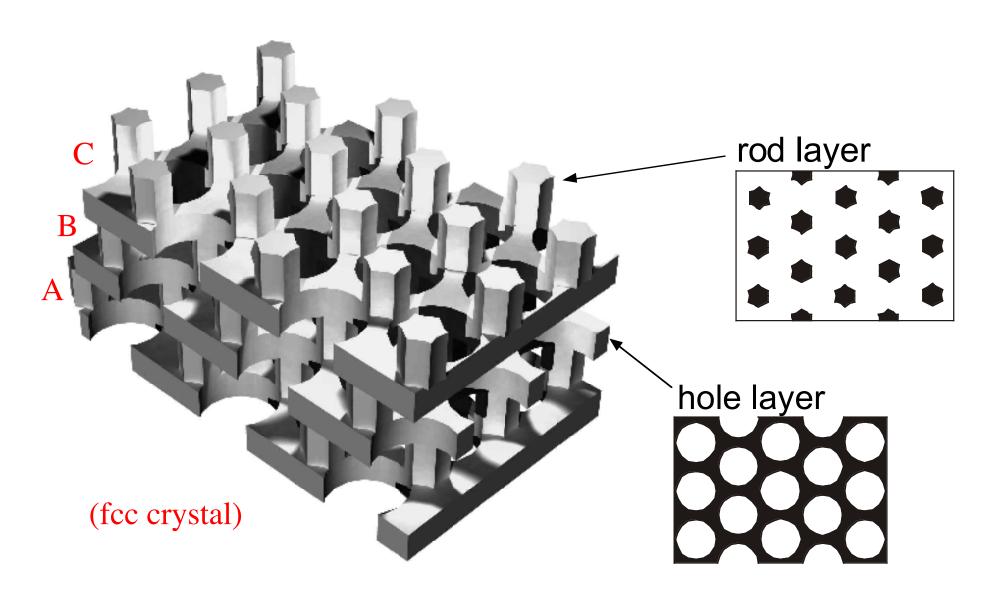
[Notomi et al., Opt. Express 13 (7), 2678 (2005).]





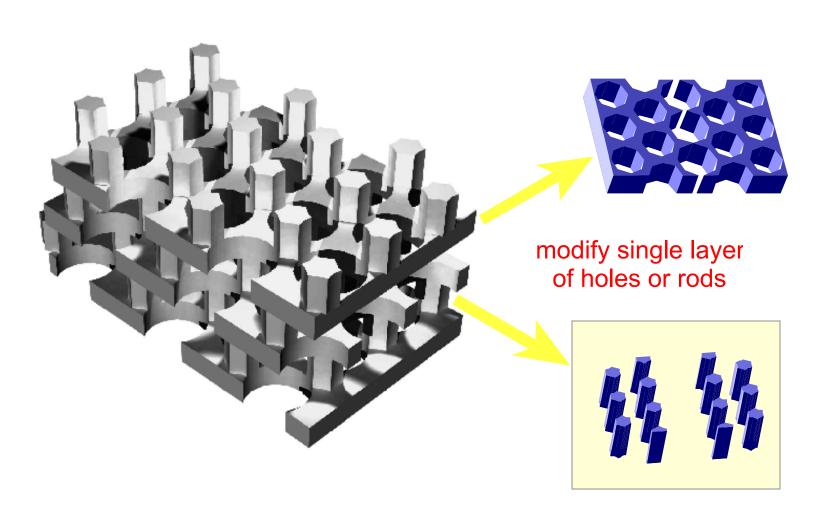
Q ~ 30,000 Power threshold ~ 40 μ W Switching energy ~ 4 pJ

Same principles apply in 3d...

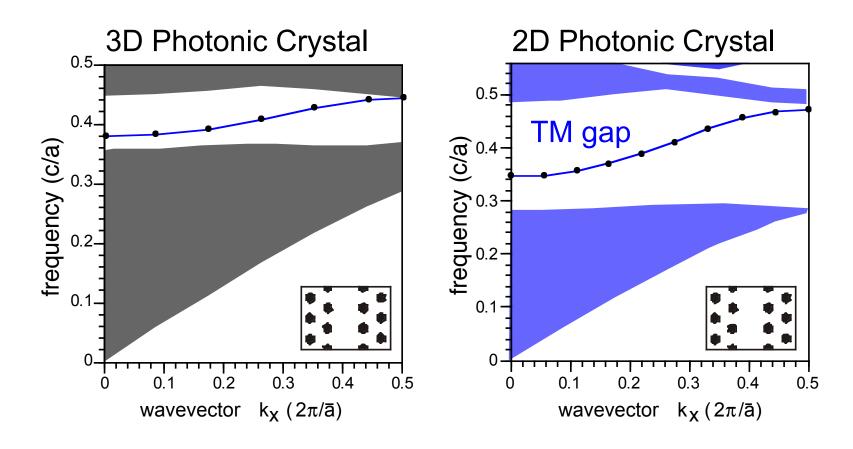


2d-like defects in 3d

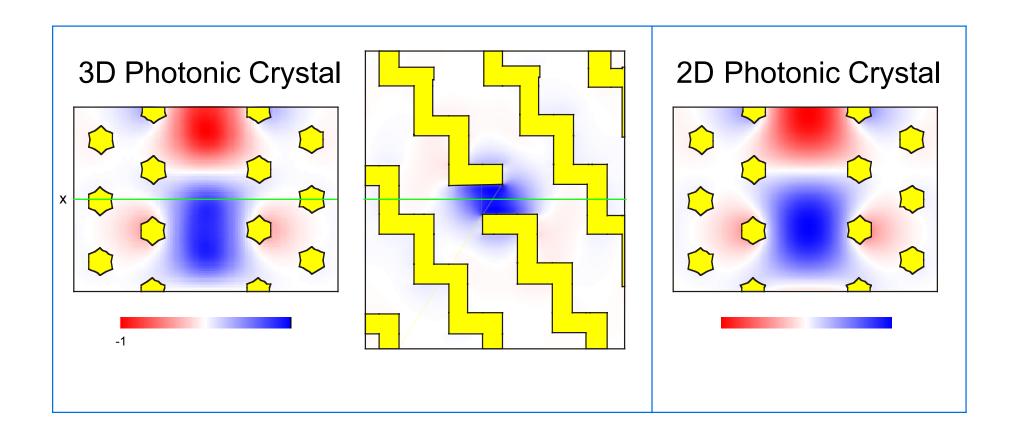
[M. L. Povinelli et al., Phys. Rev. B 64, 075313 (2001)]



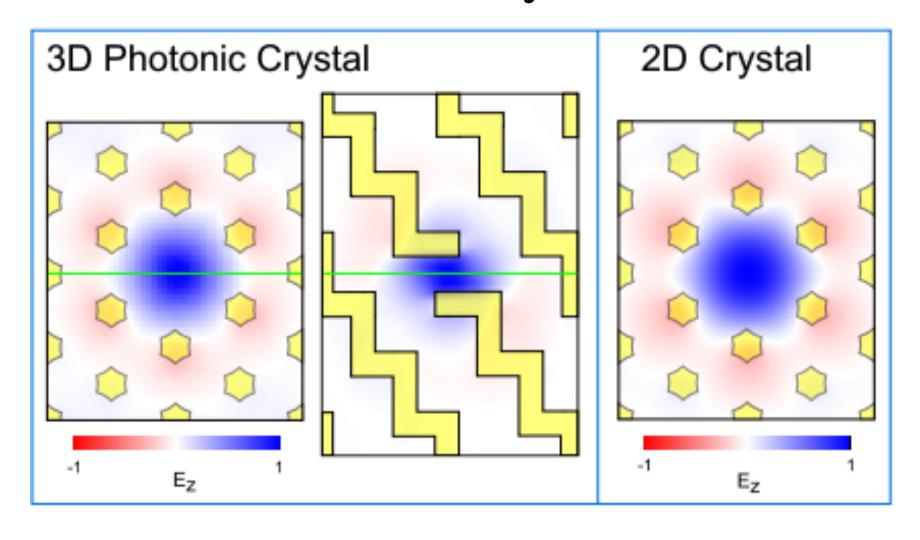
3d projected band diagram



2d-like waveguide mode



2d-like cavity mode



The Upshot

To design an interesting device, you need only:

```
symmetry + single-mode (usually)
```

+ resonance

+ (ideally) a band gap to forbid losses

Oh, and a full Maxwell simulator to get Q parameters, etcetera.

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Review: Bloch Basics

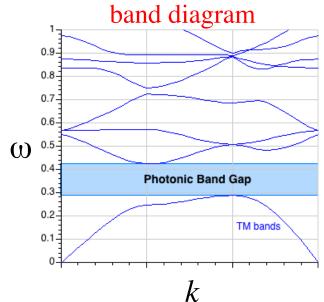
Waves in periodic media can have:

- propagation with no scattering (conserved k)
- photonic band gaps (with proper ε function)

Eigenproblem gives simple insight:

Bloch form:
$$\vec{H} = e^{i(\vec{k}\cdot\vec{x} - \omega t)}\vec{H}_{\vec{k}}(\vec{x})$$

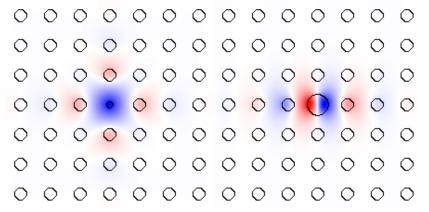
$$\left[(\vec{\nabla} + i\vec{k}) \times \frac{1}{\varepsilon} (\vec{\nabla} + i\vec{k}) \times \right] \vec{H}_{\vec{k}} = \left(\frac{\omega_n(\vec{k})}{c} \right)^2 \vec{H}_{\vec{k}}$$



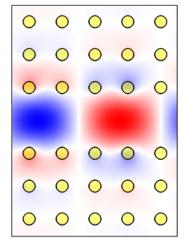
Hermitian -> orthogonal, variational theorem, etc.

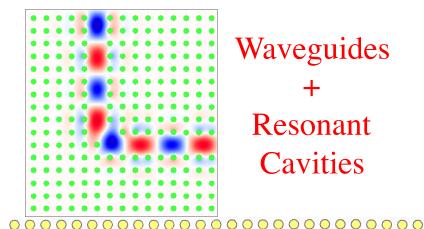
Review: Defects and Devices

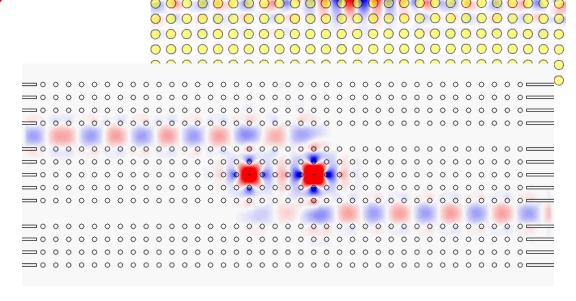
Point defects = Cavities



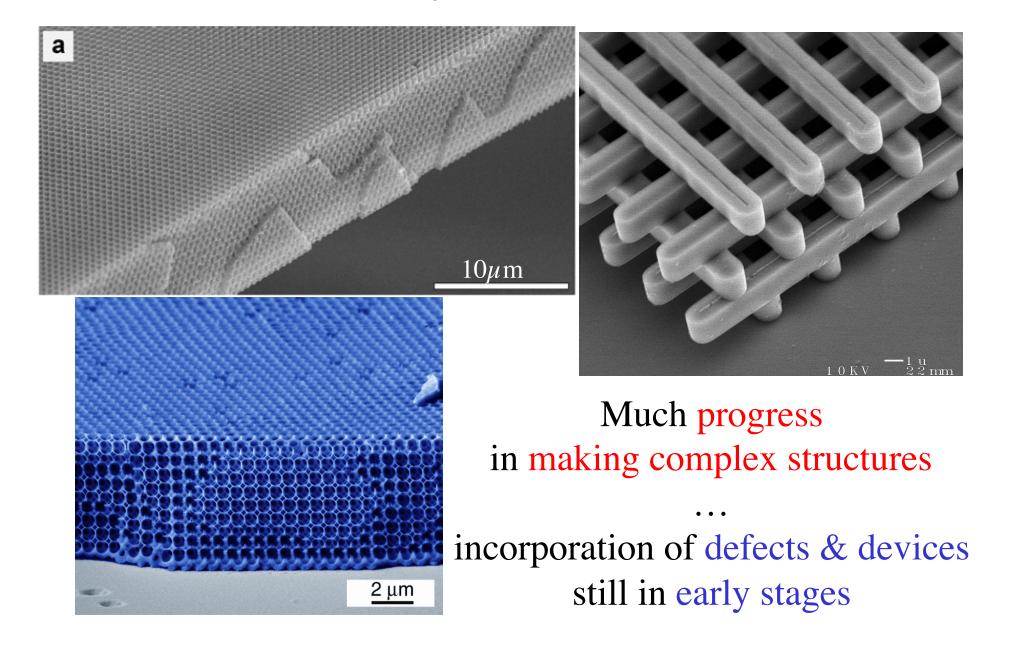
Line defects = Waveguides







Review: 3d Crystals and Fabrication

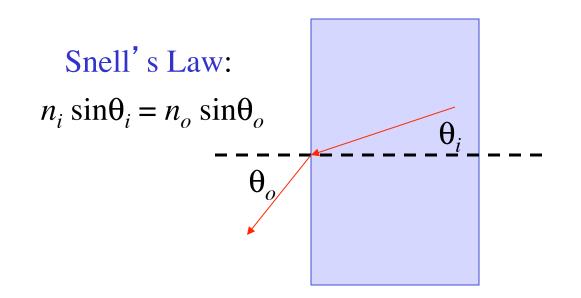


How else can we confine light?

Total Internal Reflection

 n_o

rays at shallow angles $> \theta_c$ are totally reflected

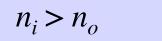


$$\sin \theta_c = n_o / n_i$$
< 1, so θ_c is real

i.e. TIR can only guide within higher index unlike a band gap

Total Internal Reflection?

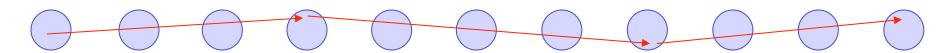
 n_o



rays at shallow angles $> \theta_c$ are totally reflected

So, for example,

a discontiguous structure can't possibly guide by TIR...



the rays can't stay inside!

Total Internal Reflection?

 n_o

 $n_i > n_o$

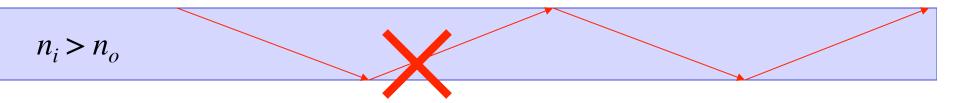
rays at shallow angles $> \theta_c$ are totally reflected

So, for example, a discontiguous structure can't possibly guide by TIR...

or can it?

Total Internal Reflection Redux

 n_o

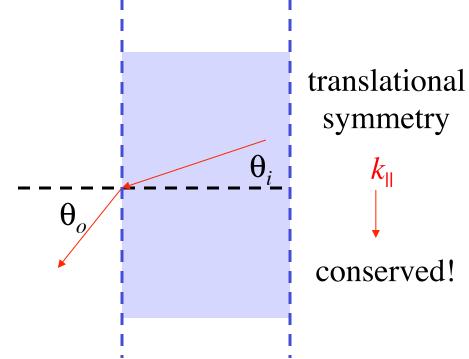


ray-optics picture is invalid on λ scale (neglects coherence, near field...)

Snell's Law is really conservation of k_{\parallel} and ω :

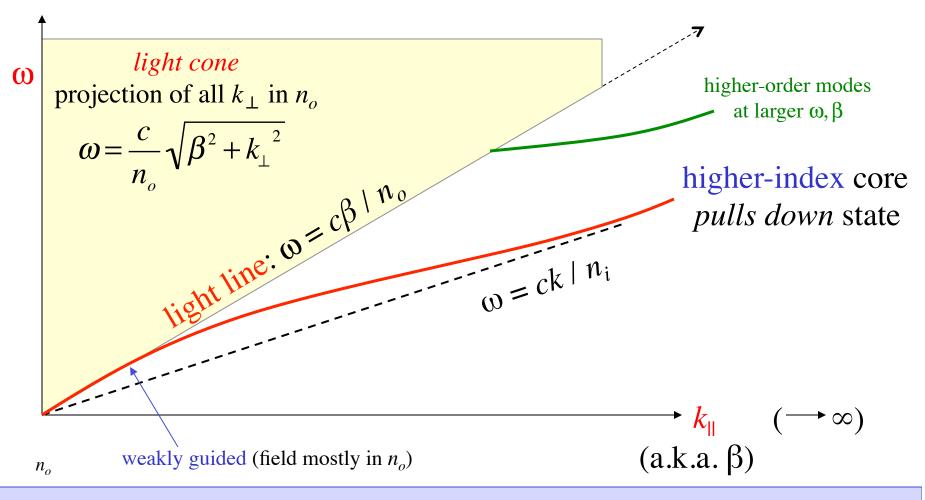
$$|k_i| \sin \theta_i = |k_o| \sin \theta_o$$

$$|k| = n\omega/c$$
(wavevector) (frequency)



Waveguide Dispersion Relations

i.e. projected band diagrams



 $n_i > n_o$

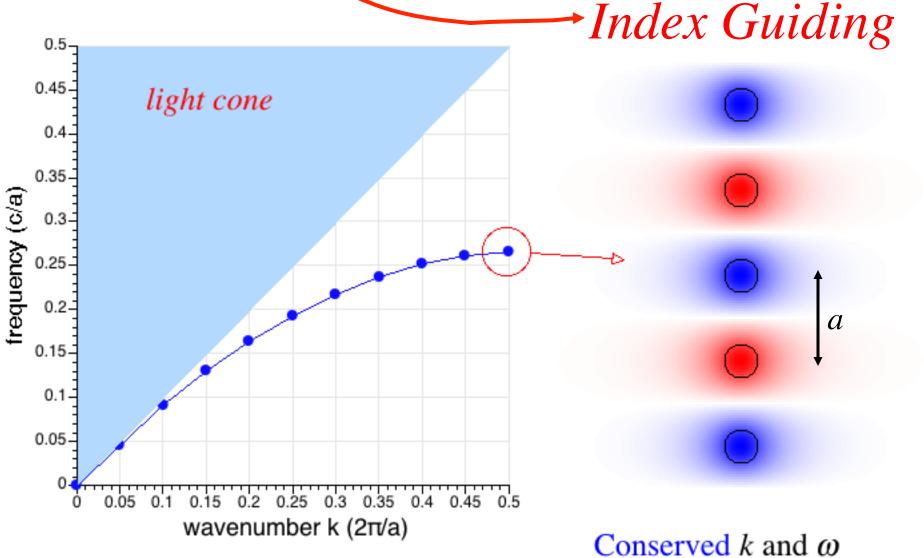
theorems:

• Any increase in the index of refraction in the cross section (1d/2d) will always localize waveguide mode(s)

[Bamberger & Bonnet, SIAM J. Math Anal. 21, 1487 (1990)] (similar to proofs of bound states in 1d/2d Schrödinger equation)

• Also true for periodic waveguides and periodic claddings (PCF) [Lee, Avniel, & Johnson, *Opt. Express* **13**, 9261 (2008)]

Strange Total Internal Reflection

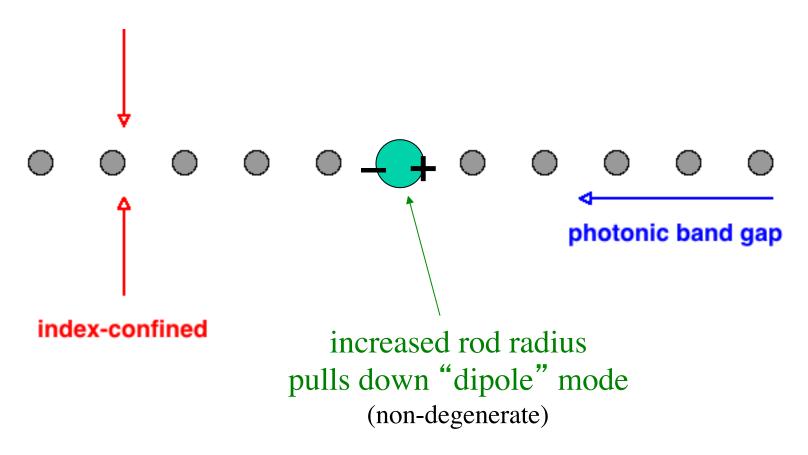


Conserved k and ω
+ higher index to pull down state
= localized/guided mode.

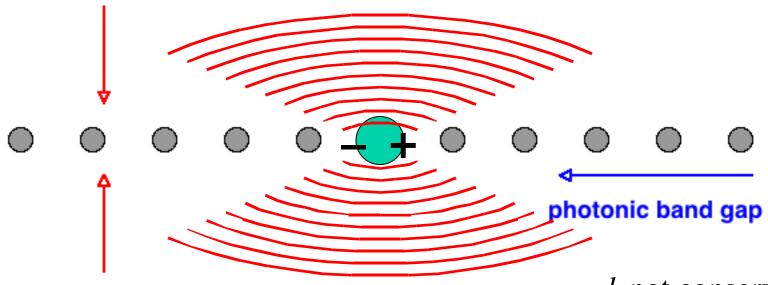
A Hybrid Photonic Crystal:

1d band gap + index guiding

A Resonant Cavity

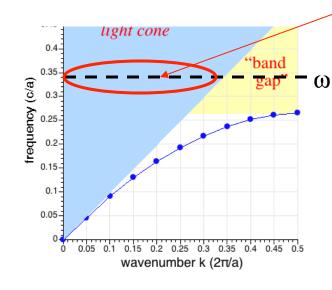


A Resonant Cavity



index-confined

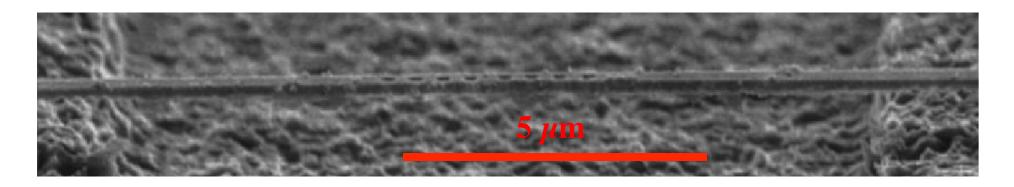
The trick is to keep the radiation small... (more on this later)

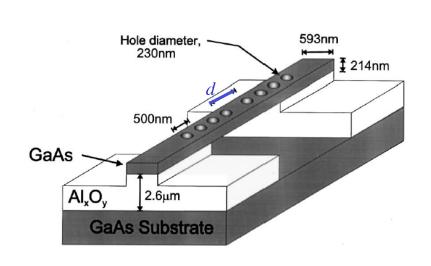


k not conserved so coupling to light cone:

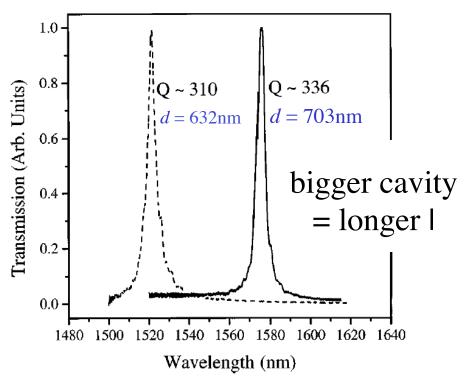
radiation

Meanwhile, back in reality... Air-bridge Resonator: 1d gap + 2d index guiding



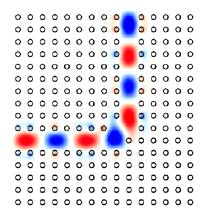


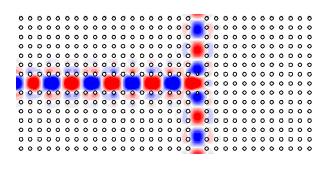
[D. J. Ripin et al., J. Appl. Phys. 87, 1578 (2000)]

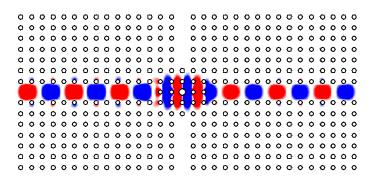


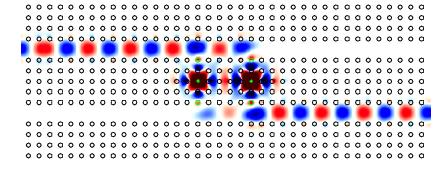
Time for Two Dimensions...

2d is all we really need for many interesting devices ...darn z direction!

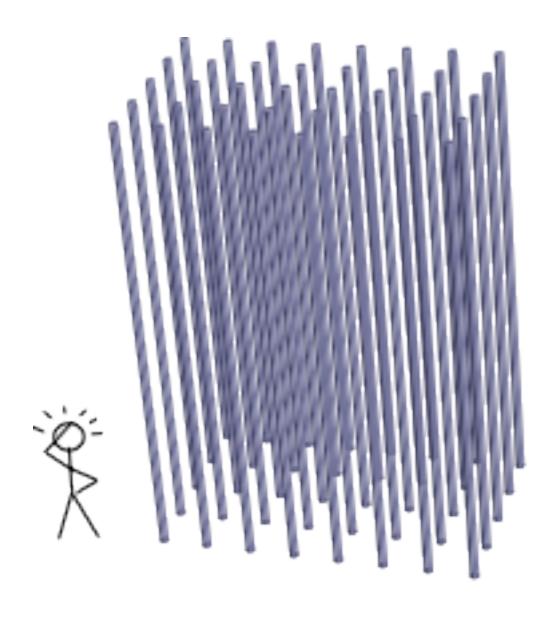








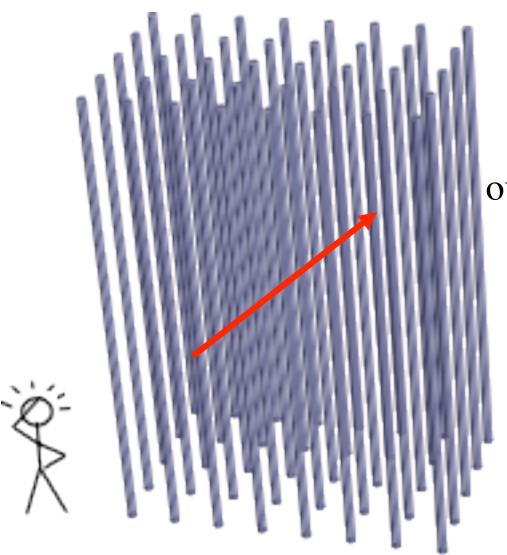
How do we make a 2d bandgap?



Most obvious solution?

make
2d pattern
really tall

How do we make a 2d bandgap?



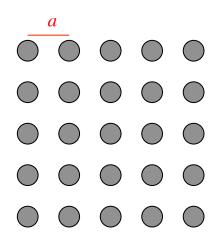
If height is finite, we must couple to out-of-plane wavevectors...

 k_z not conserved

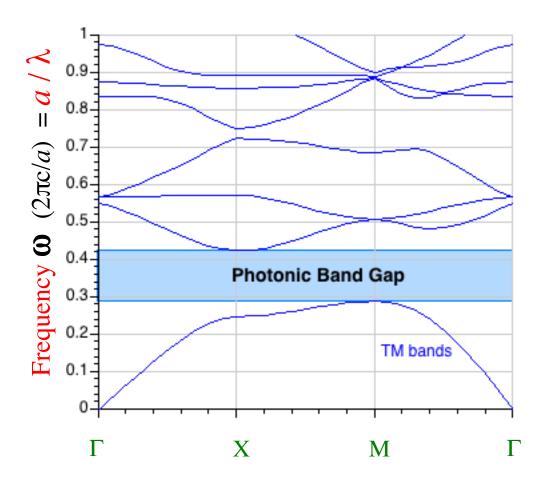
A 2d band diagram in 3d?

Recall the 2d band diagram:

... what happens in 3d?

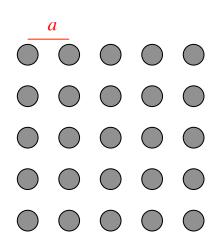


& what about polarization?

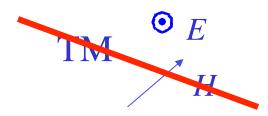


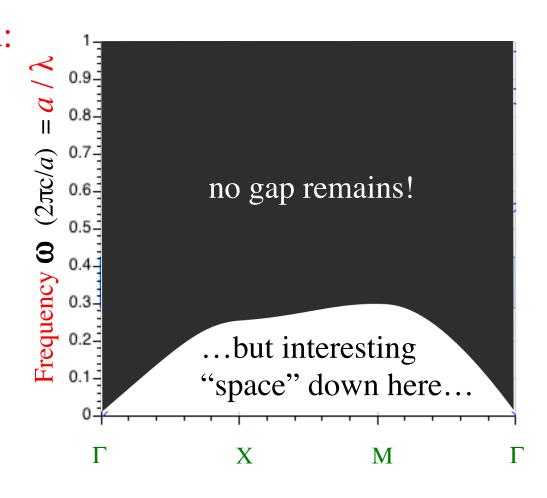
A 2d band diagram in 3d

In 3d, continuum of k_z fills upwards from 1st band:

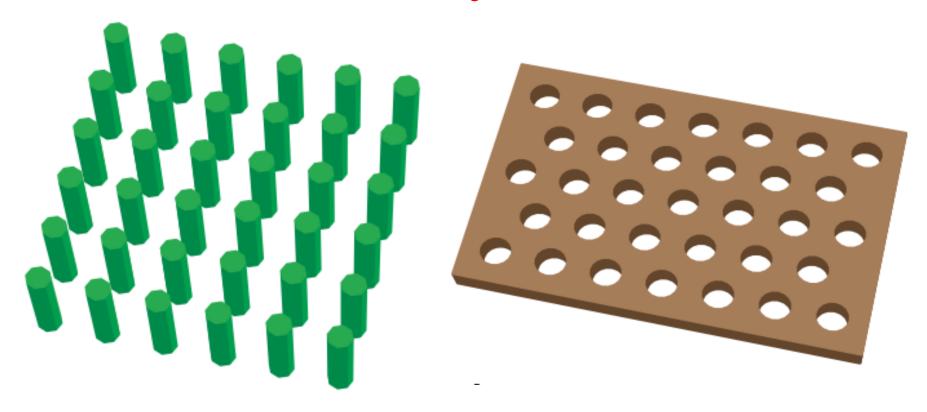


& pure polarizations disappear





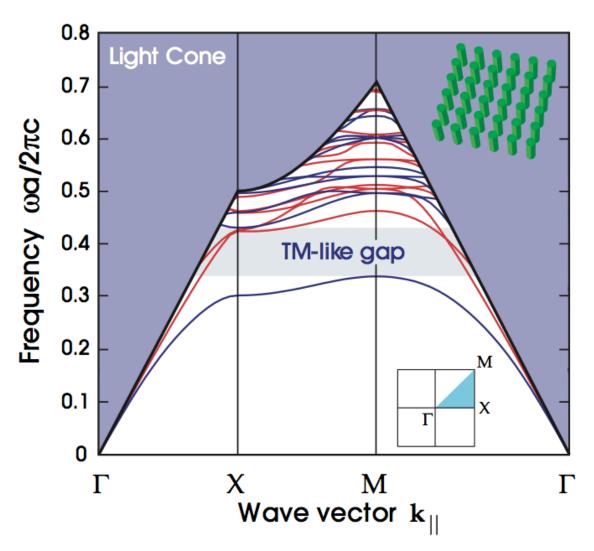
Photonic-Crystal Slabs



2d photonic bandgap + vertical index guiding

[J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, *Photonic Crystals: Molding the Flow of Light*, 2nd edition, chapter 8]

Rod-Slab Projected Band Diagram



Light cone = all solutions in medium above/below slab

Guided modes below light cone = no radiation

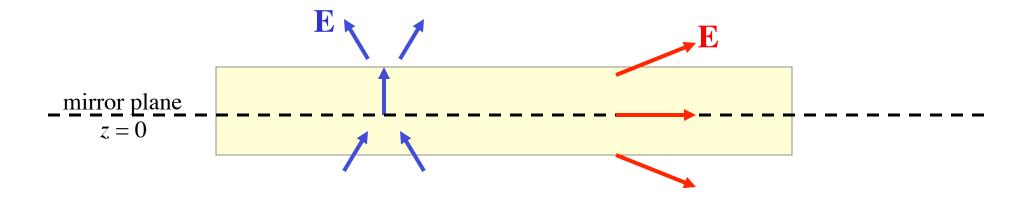
Two "polarizations:"
TM-like & TE-like

"Gap" in guided modes ... not a complete gap

Slab thickness is crucial to obtain gap...

Slab symmetry & "polarization"

2d: TM and TE modes



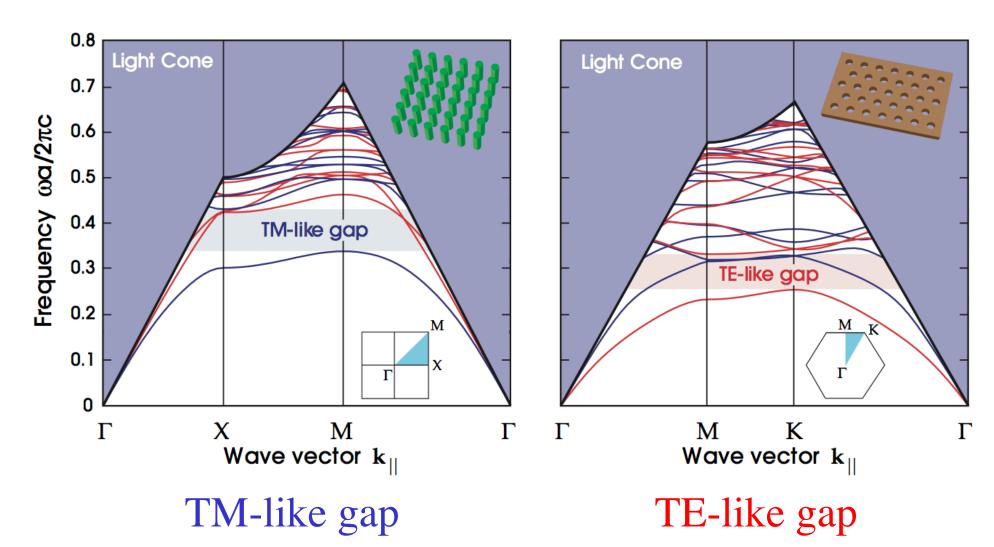
slab: odd (TM-like) and even (TE-like) modes

Like in 2d, there may only be a band gap in one symmetry/polarization

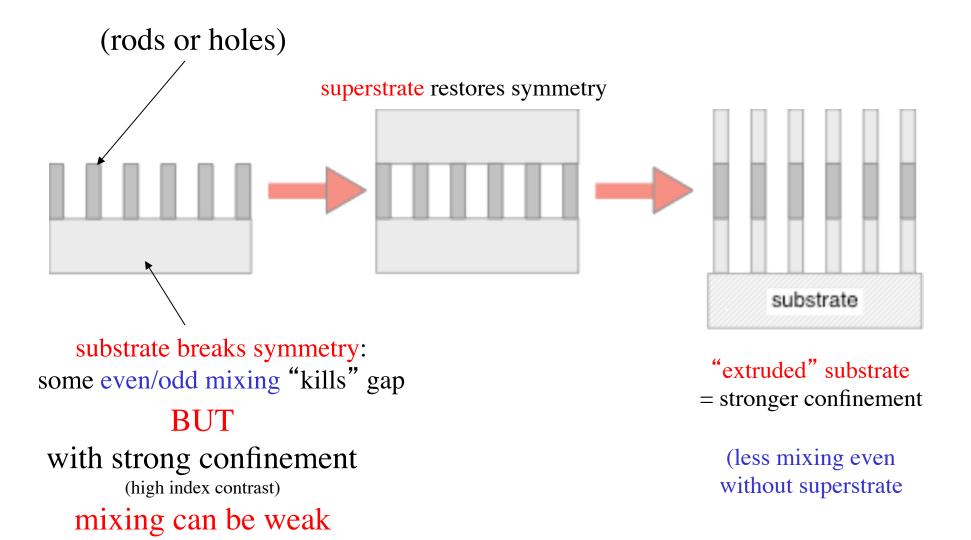
Slab Gaps

Rod slab

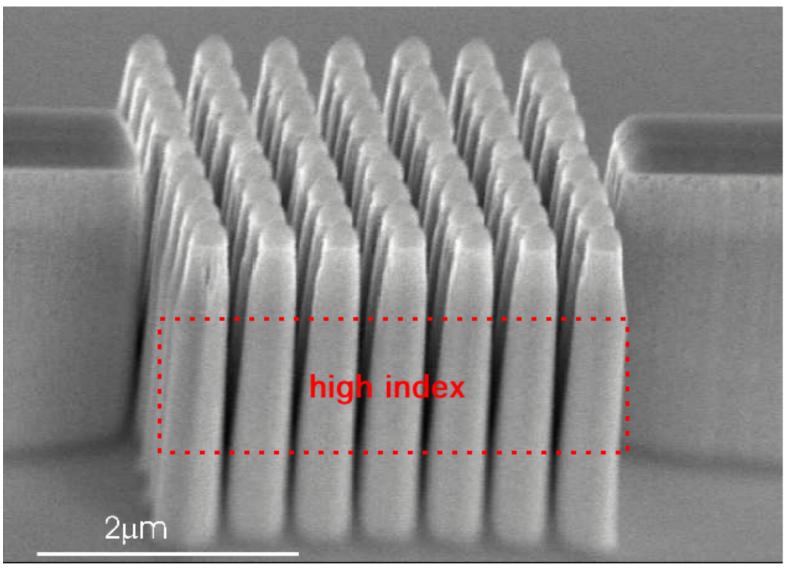
Hole slab



Substrates, for the Gravity-Impaired



Extruded Rod Substrate



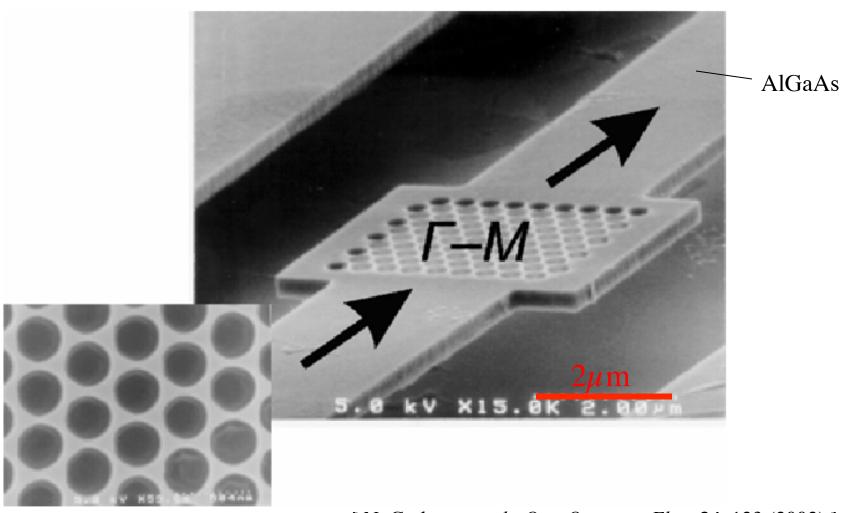
S. Assefa, L. A. Kolodziejski

 $(GaAs on AlO_x)$

[S. Assefa et al., APL 85, 6110 (2004).]

Air-membrane Slabs

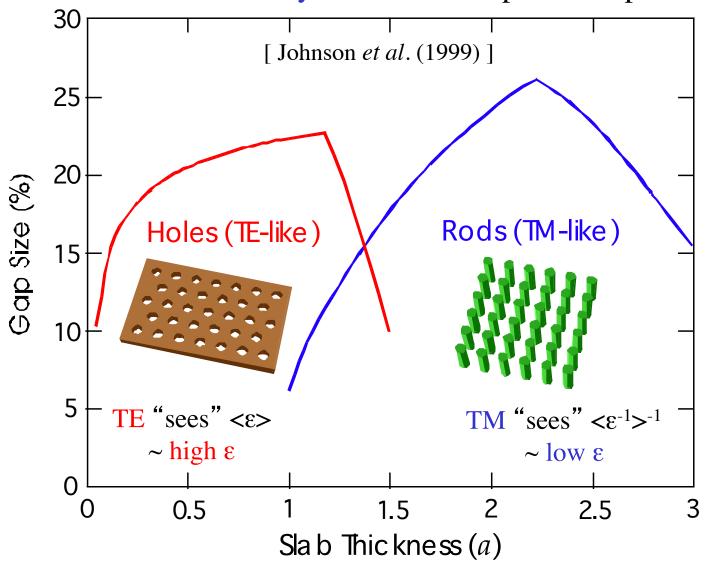
who needs a substrate?



[N. Carlsson et al., Opt. Quantum Elec. **34**, 123 (2002)]

Optimal Slab Thickness $\sim \lambda/2$, but $\lambda/2$ in what material?

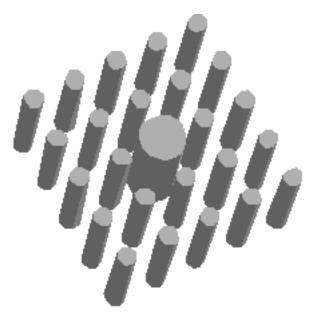
effective medium theory: effective \(\varepsilon \) depends on polarization

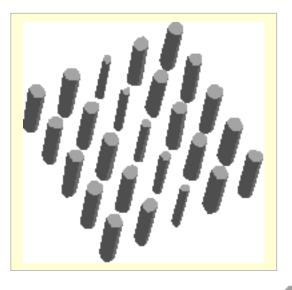


Photonic-Crystal Building Blocks

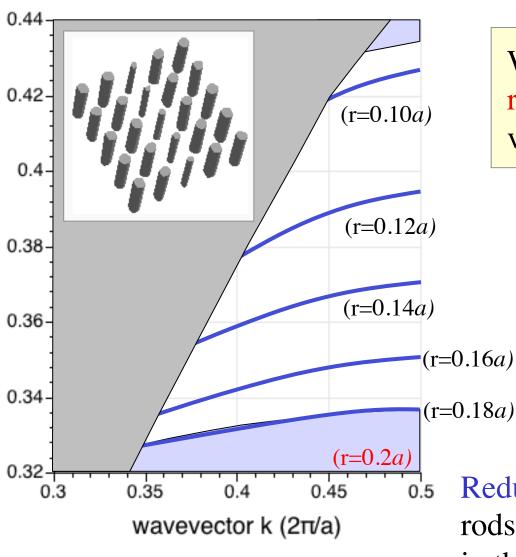
point defects (cavities)

line defects (waveguides)





A Reduced-Index Waveguide

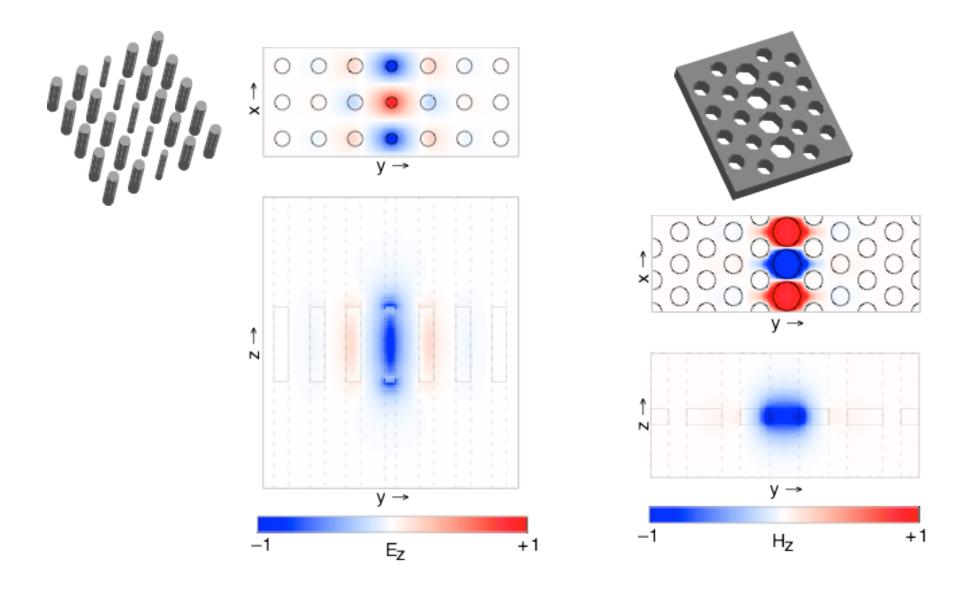


We *cannot* completely remove the rods—no vertical confinement!

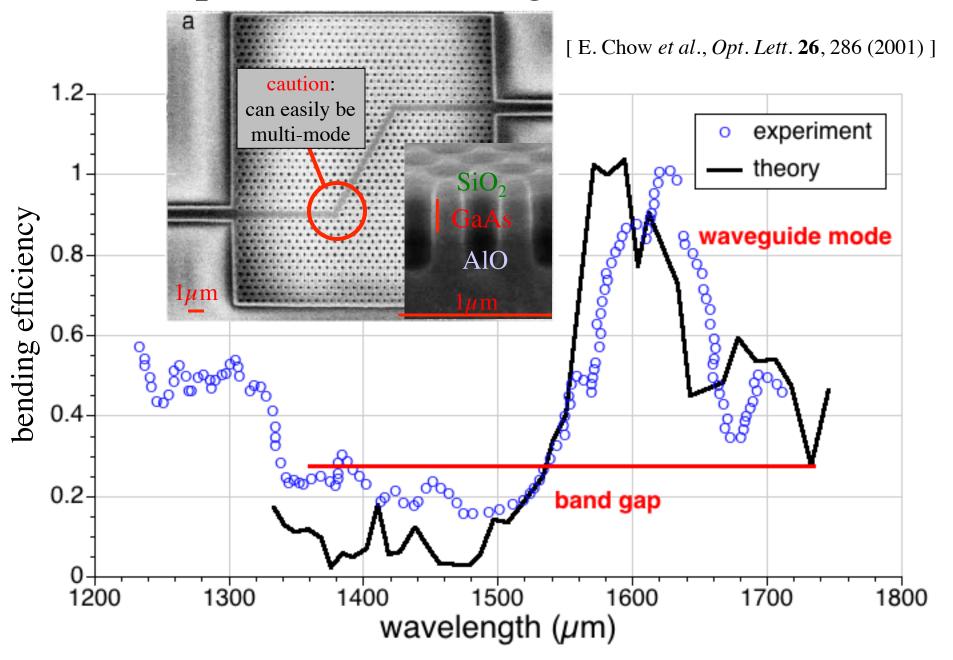
Still have conserved wavevector—under the light cone, no radiation

Reduce the radius of a row of rods to "trap" a waveguide mode in the gap.

Reduced-Index Waveguide Modes



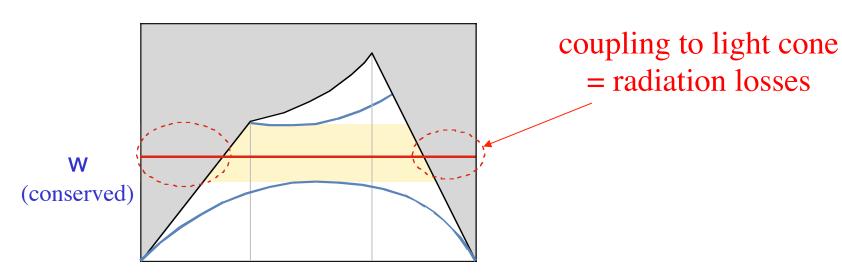
Experimental Waveguide & Bend



Inevitable Radiation Losses

whenever translational symmetry is broken

e.g. at cavities, waveguide bends, disorder...



k is no longer conserved!

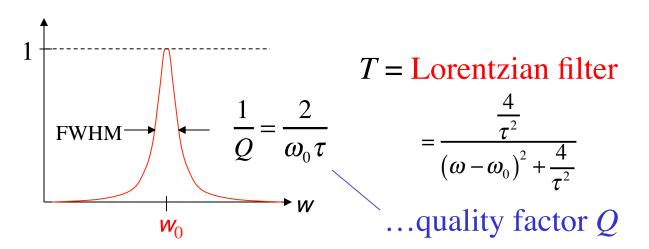
Dimensionless Losses: Q

quality factor Q = # optical periods for energy to decay by $\exp(-2\pi)$

energy $\sim \exp(-\omega t/Q)$

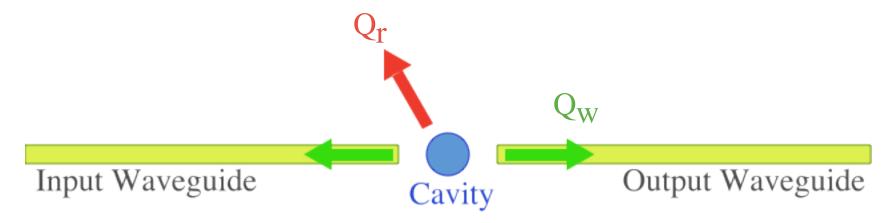
in frequency domain: 1/Q = bandwidth

from last time: (coupling-ofmodes-in-time)



All Is Not Lost

A simple model device (filters, bends, ...):



$$\frac{1}{Q} = \frac{1}{Q_r} + \frac{1}{Q_w}$$

Q = lifetime/period

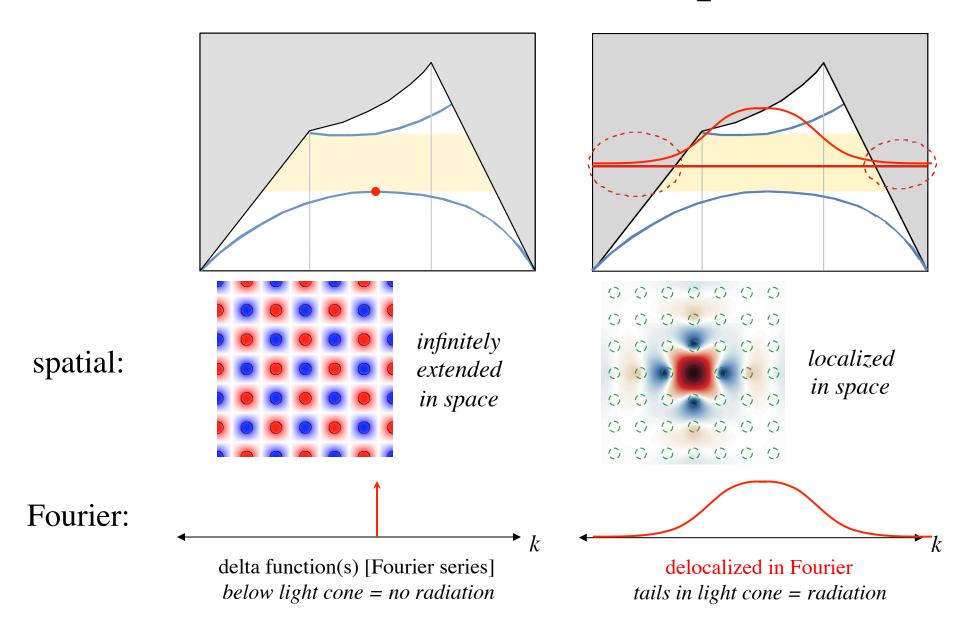
= frequency/bandwidth

We want: $Q_r >> Q_w$

 $1 - transmission \sim 2Q / Q_r$

worst case: high-Q (narrow-band) cavities

Radiation loss: A Fourier picture

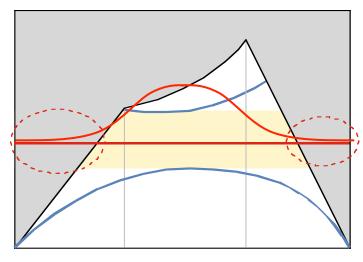


A tradeoff: Localization vs. Loss

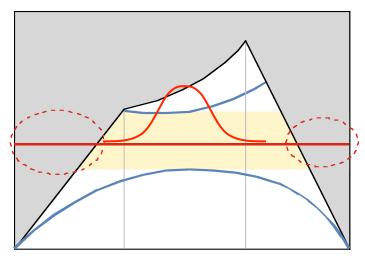
"Uncertainty principle:"

less spatial localization = more Fourier localization

= less radiation loss

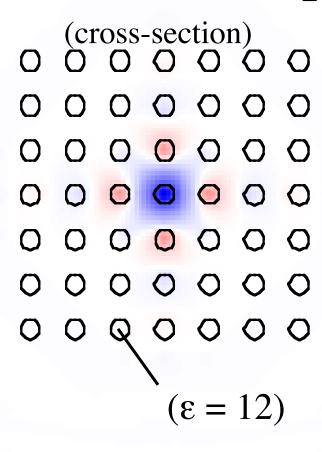


stronger spatial localization

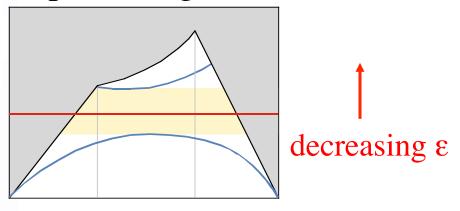


weaker spatial localization

Monopole Cavity in a Slab

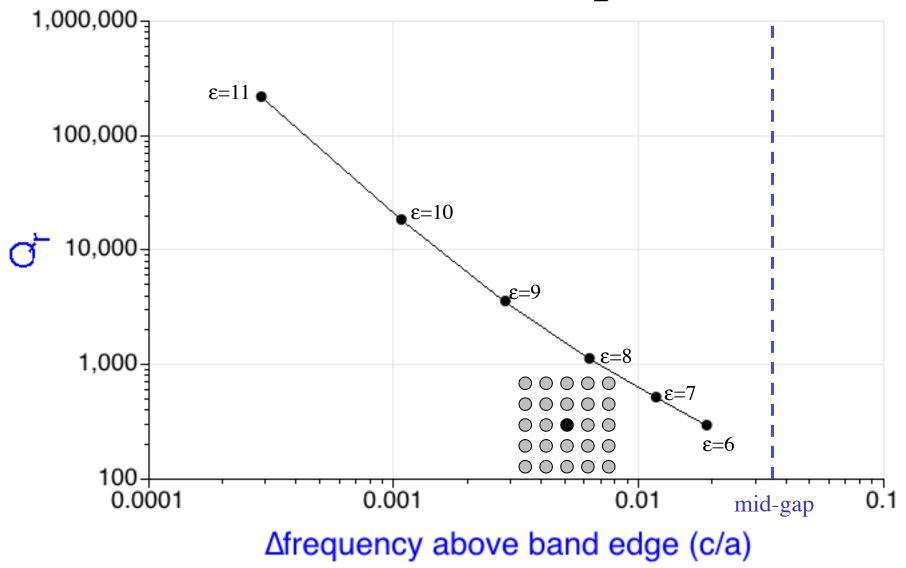


Lower the ε of a single rod: push up a monopole (singlet) state.



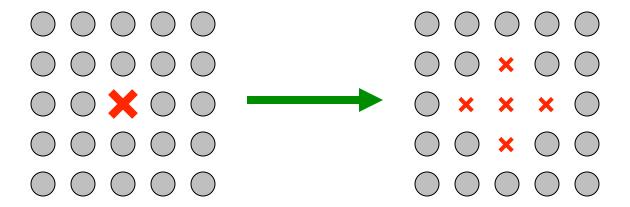
Use small $\Delta \varepsilon$: delocalized in-plane, & high-Q (we hope)

Delocalized Monopole Q



[S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001).]

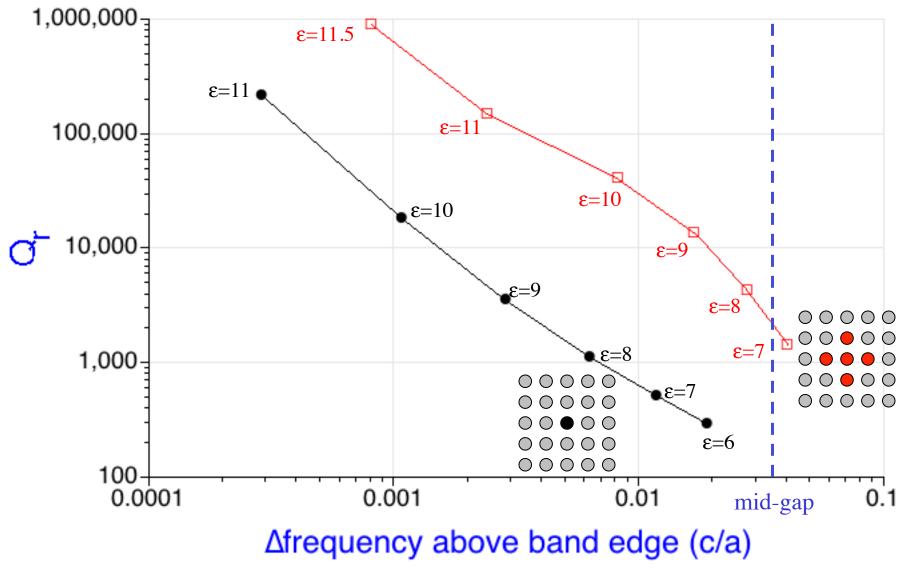
Super-defects



Weaker defect with more unit cells.

More delocalized at the same point in the gap (*i.e.* at same bulk decay rate)

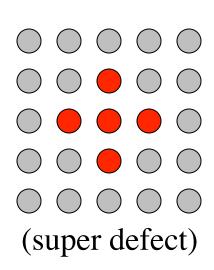
Super-Defect vs. Single-Defect Q

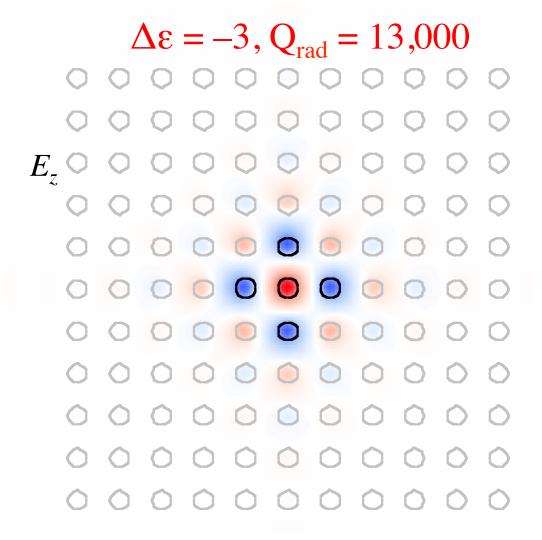


[S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001).]

Super-Defect State

(cross-section)





still ~localized: In-plane Q_{\parallel} is > 50,000 for only 4 bulk periods

How do we compute Q?

(via 3d FDTD [finite-difference time-domain] simulation)

excite cavity with dipole source (broad bandwidth, e.g. Gaussian pulse)

... monitor field at some point °

...extract frequencies, decay rates via fancy signal processing (not just FFT/fit)

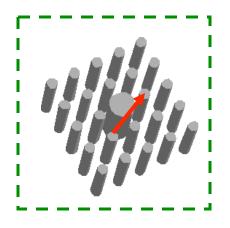
[V. A. Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

Pro: no *a priori* knowledge, get all ω 's and Q's at once

Con: no separate Q_w/Q_r , mixed-up field pattern if multiple resonances

How do we compute Q?

(via 3d FDTD [finite-difference time-domain] simulation)



excite cavity with narrow-band dipole source (e.g. temporally broad Gaussian pulse)

— source is at ω_0 resonance, which must already be known (via 1)

...measure outgoing power P and energy U

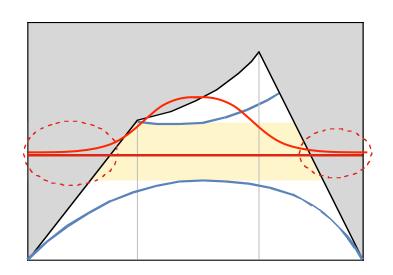
$$Q = \omega_0 U / P$$

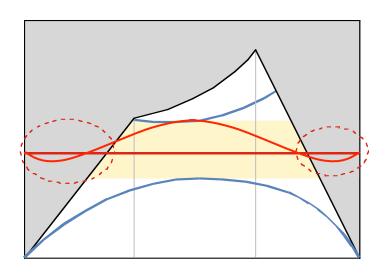
Pro: separate Q_w/Q_r , also get field pattern when multimode

Con: requires separate run \bigcirc 1 to get ω_0 , long-time source for closely-spaced resonances

Can we increase Q without delocalizing (much)?

Cancellations?





Maybe we can make the Fourier transform oscillate through zero at some important *k* in the light cone?

But what *k*'s are "important?"

Equivalently, some kind of destructive interference in the radiated field?

Need a more compact representation

Cannot cancel infinitely many $\mathbf{E}(x)$ integrals

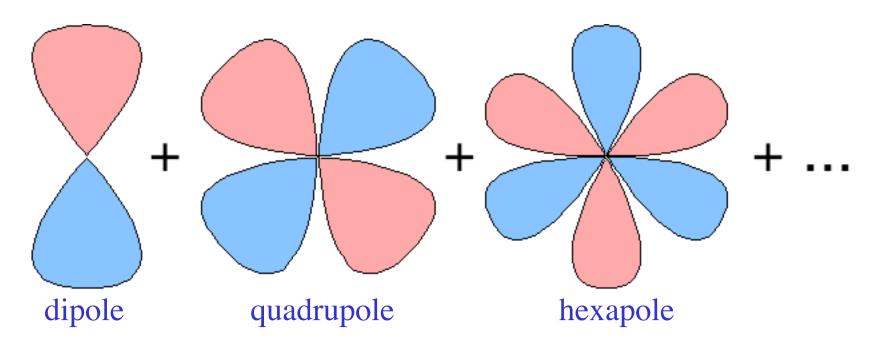
Radiation pattern from localized source...

use multipole expansion
 & cancel largest moment

Multipole Expansion

[Jackson, Classical Electrodynamics]

radiated field =

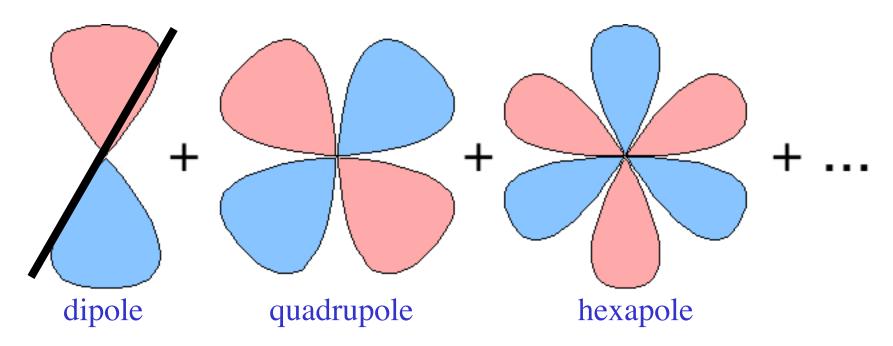


Each term's strength = single integral over near field
...one term is cancellable by tuning one defect parameter

Multipole Expansion

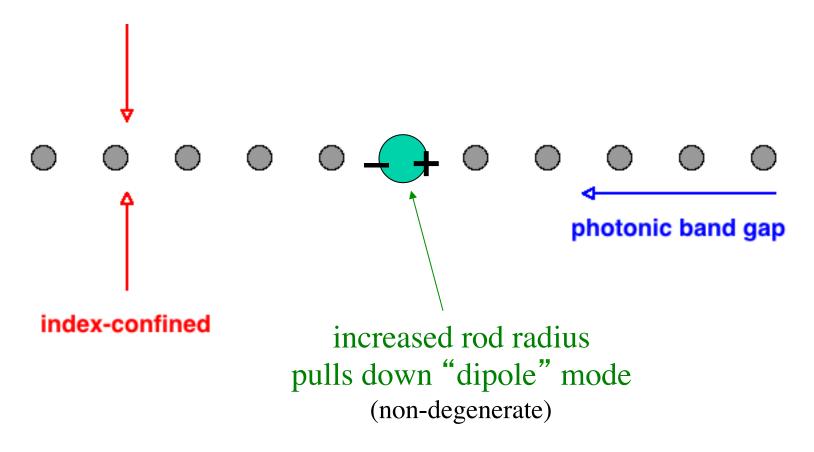
[Jackson, Classical Electrodynamics]

radiated field =

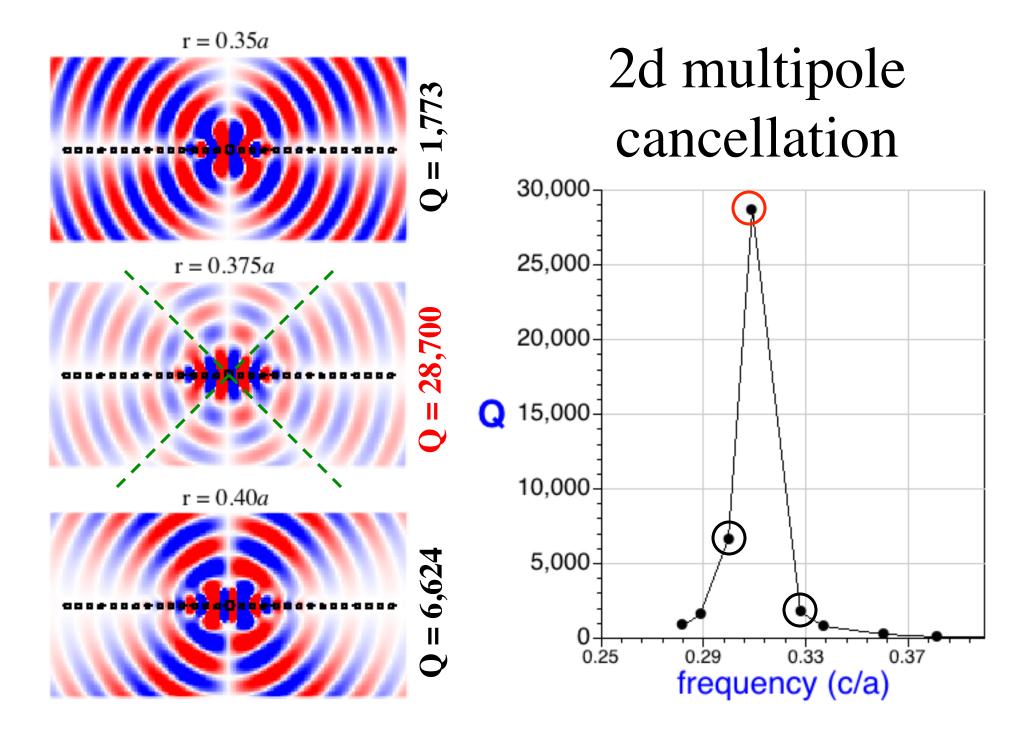


peak Q (cancellation) = transition to higher-order radiation

Multipoles in a 2d example

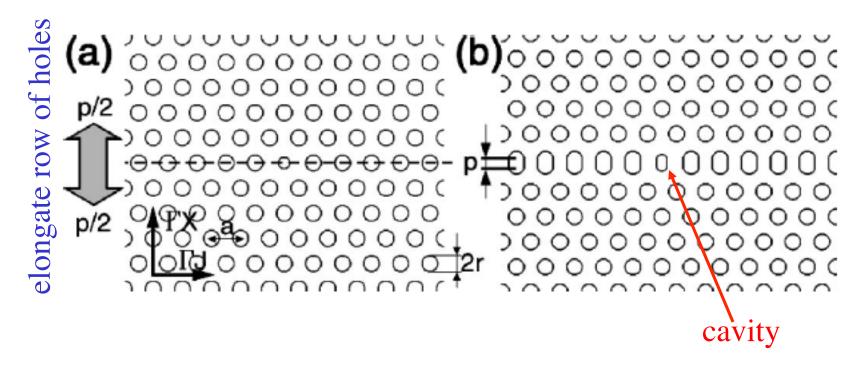


as we change the radius, ω sweeps across the gap



An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]



Elongation p is a tuning parameter for the cavity...

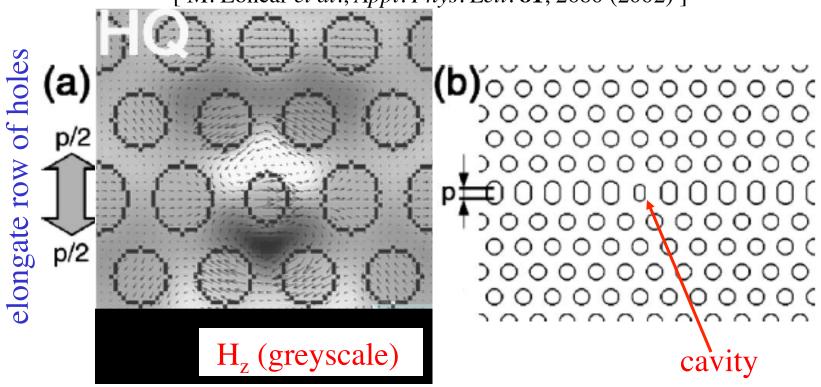
...in simulations, Q peaks sharply to ~10000 for p = 0.1a

(likely to be a multipole-cancellation effect)

^{*} actually, there are two cavity modes; p breaks degeneracy

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]



Elongation p is a tuning parameter for the cavity...

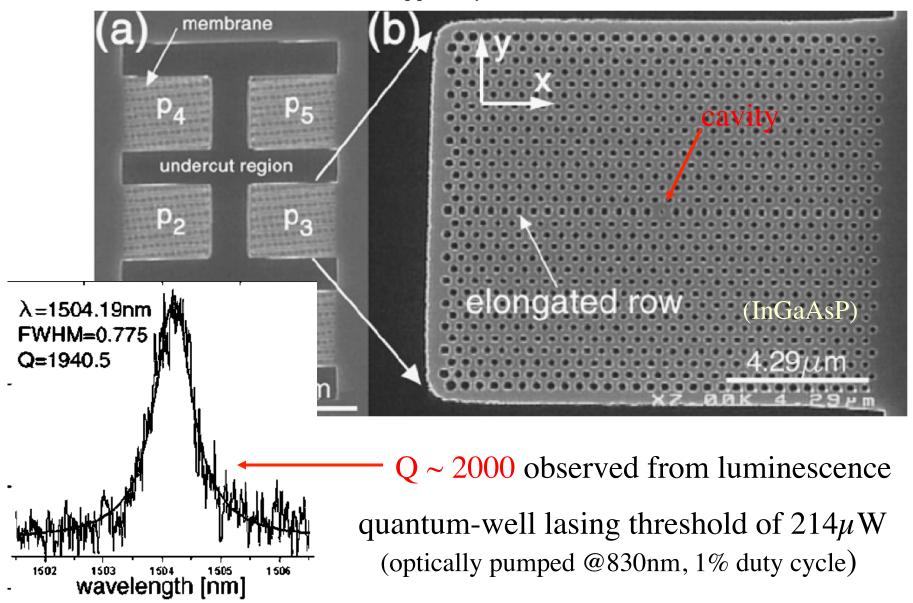
...in simulations, Q peaks sharply to ~10000 for p = 0.1a

(likely to be a multipole-cancellation effect)

^{*} actually, there are two cavity modes; p breaks degeneracy

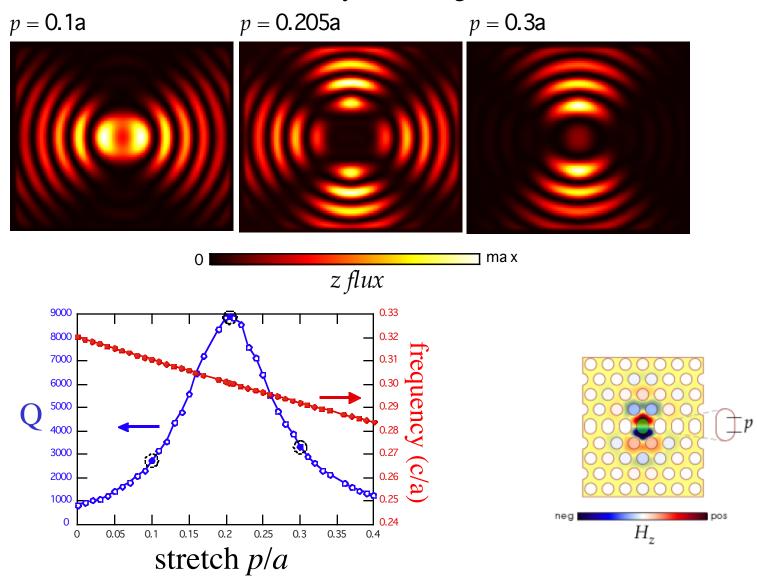
An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]



Multipole Cancellation in Stretched Cavity

[calculations courtesy A. Rodriguez, 2006]



Slab Cavities in Practice: Q vs. V

$$Q \sim 10,000 \ (V \sim 4 \times \text{optimum})$$

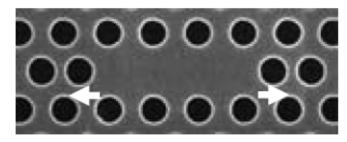
 $= (\lambda/2n)^3$

[Ryu, Opt. Lett. 28, 2390 (2003)]

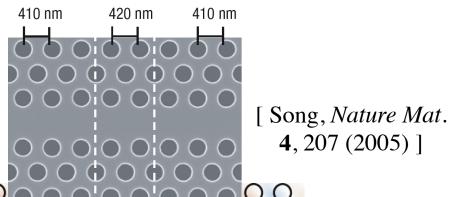
(theory only)

 $Q \sim 10^6 \ (V \sim 11 \times \text{optimum})$

[Akahane, *Nature* **425**, 944 (2003)]



 $Q \sim 45,000 \ (V \sim 6 \times \text{optimum})$



 $Q \sim 600,000 \ (V \sim 10 \times \text{optimum})$

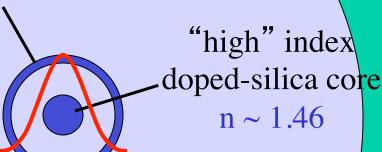
Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Optical Fibers Today

(not to scale)

more complex profiles to tune dispersion



losses ~ 0.2 dB/kmat $\lambda=1.55\mu\text{m}$ (amplifiers every 50–100km)

silica cladding

 $n \sim 1.45$

confined mode field diameter $\sim 8\mu$ m

protective polymer sheath

but this isas good asit gets...

[R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective]

The Glass Ceiling: Limits of Silica

Loss: amplifiers every 50–100km

...limited by Rayleigh scattering (molecular entropy) ...cannot use "exotic" wavelengths like 10.6µm

Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits (limited by mode area ~ single-mode, bending loss) also cannot be made (very) large for compact nonlinear devices

Radical modifications to dispersion, polarization effects?

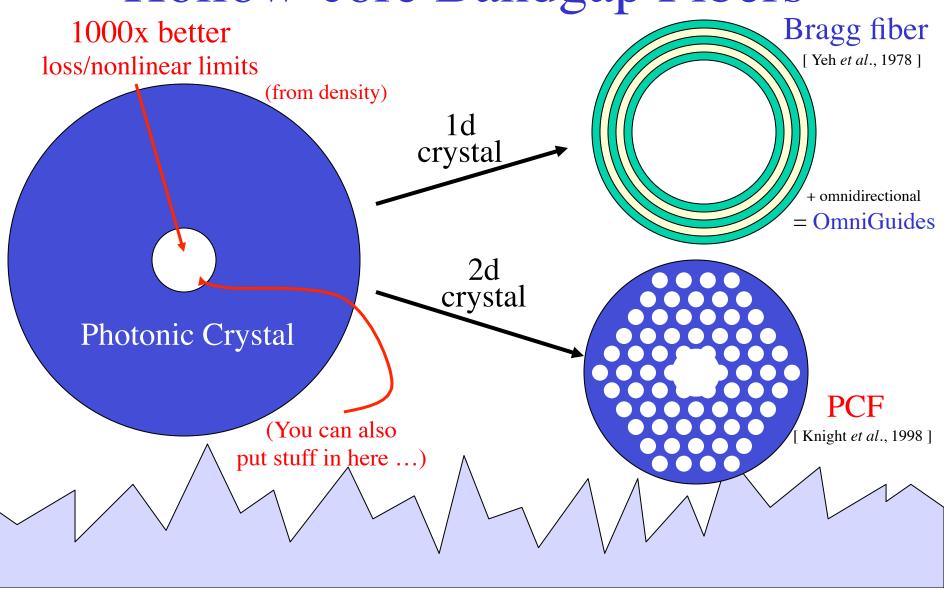
...tunability is limited by low index contrast

Long Distances High Bit-Rates Compact Devices

Lower Latencies Dense Wavelength Multiplexing (DWDM)

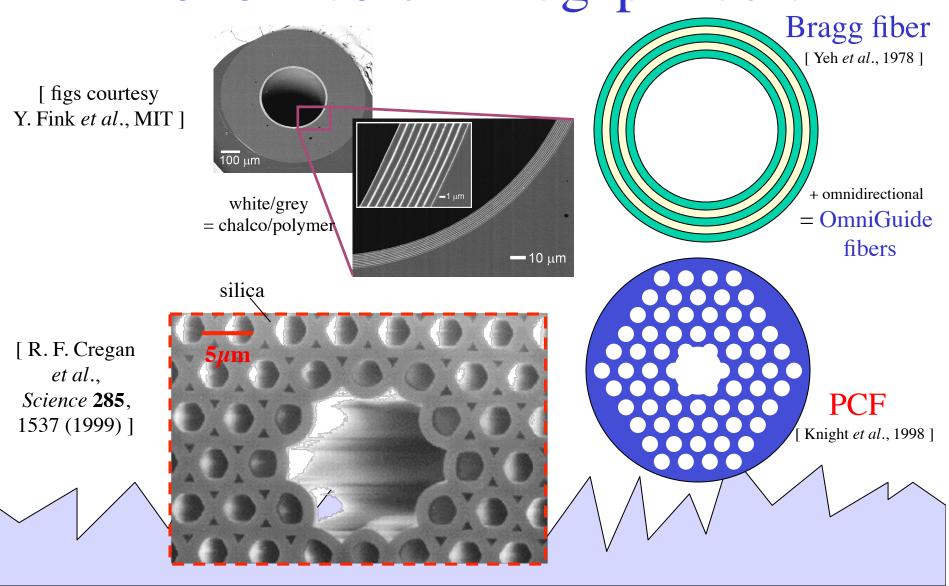
Breaking the Glass Ceiling:

Hollow-core Bandgap Fibers

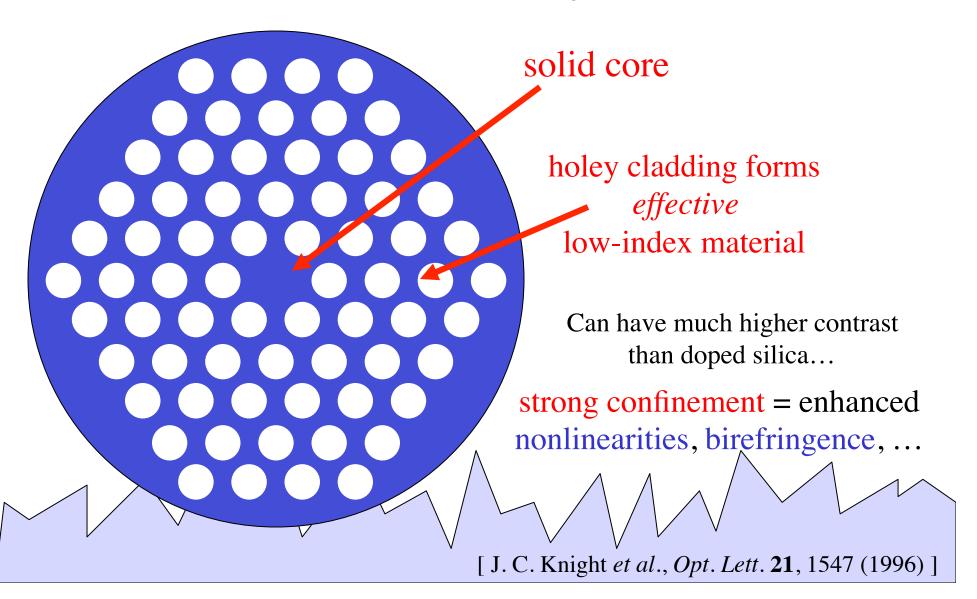


Breaking the Glass Ceiling:

Hollow-core Bandgap Fibers

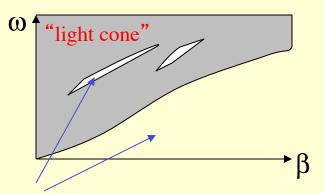


Breaking the Glass Ceiling II: Solid-core Holey Fibers



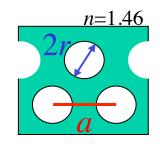
Sequence of Analysis

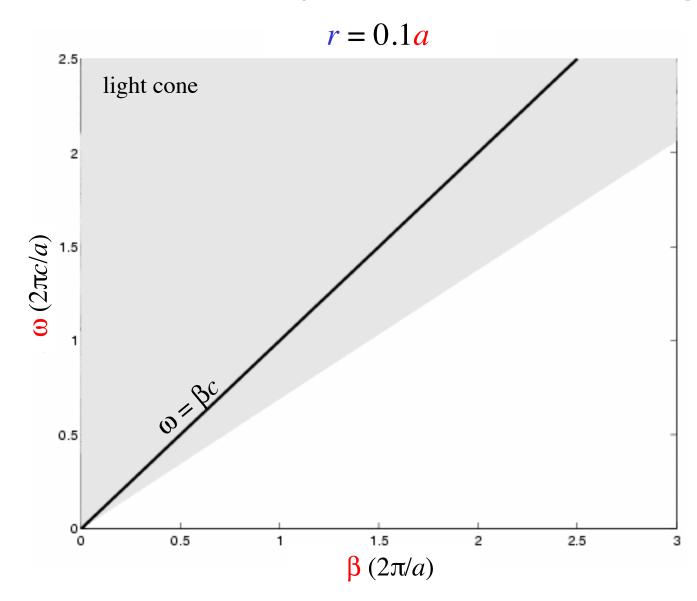
1 Plot all solutions of infinite cladding as ω vs. β (= k_z)

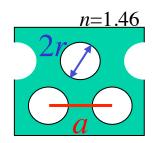


empty spaces (gaps): guiding possibilities

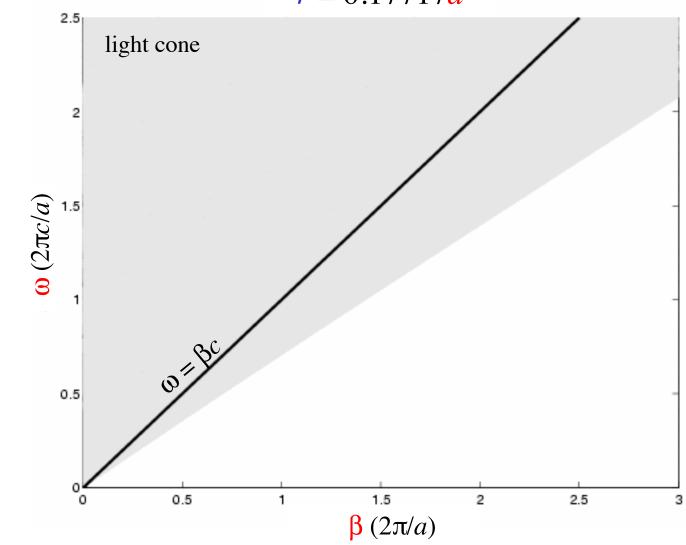
- Core introduces new states in empty spaces plot $\omega(\beta)$ dispersion relation
 - 3 Compute other stuff...

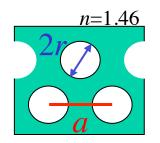


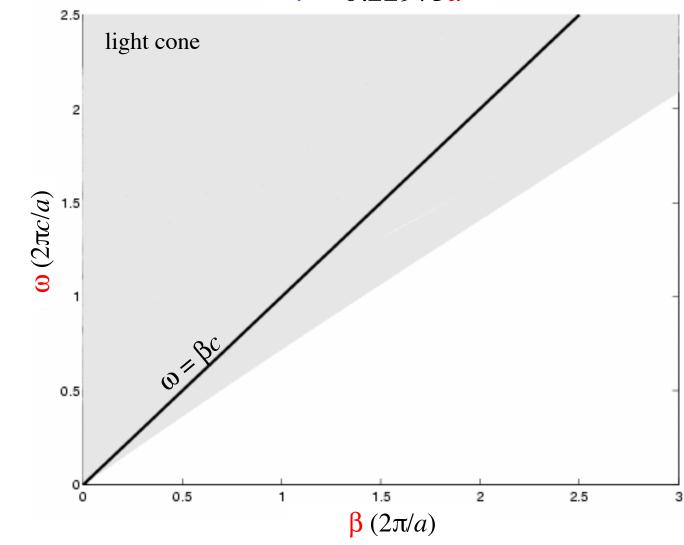


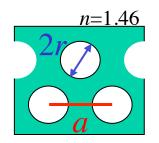


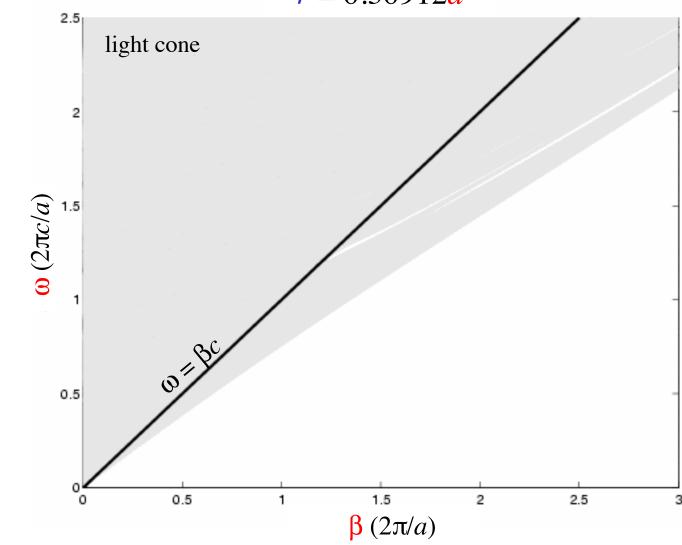
r = 0.17717a

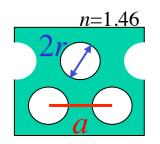




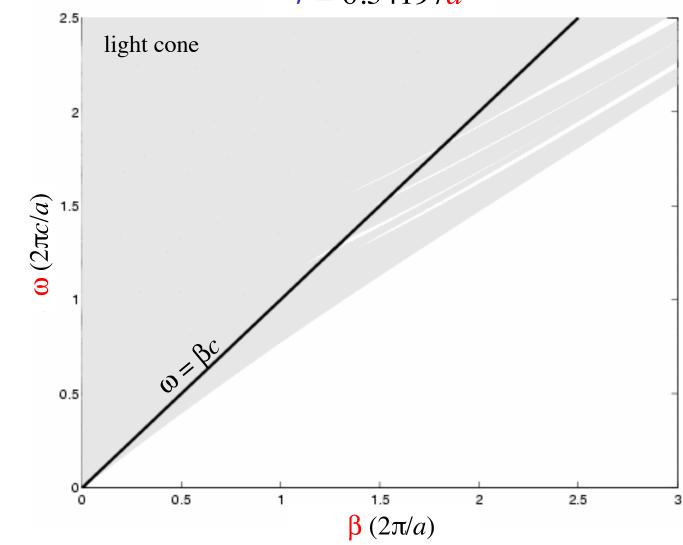


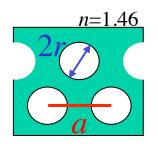




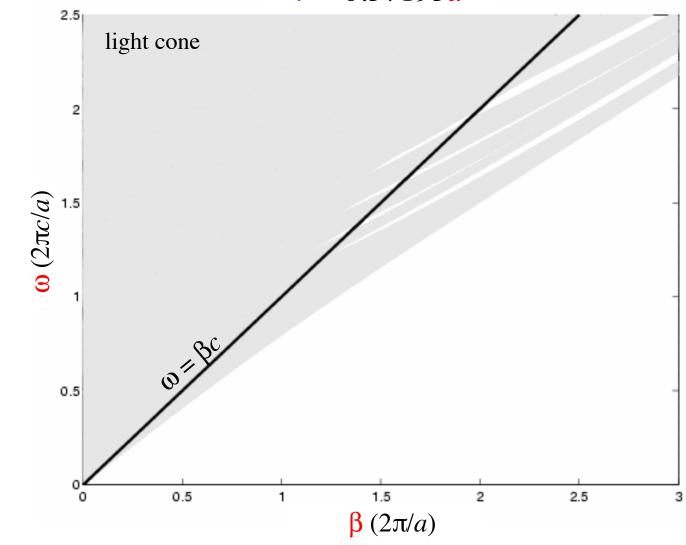


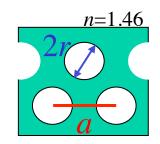


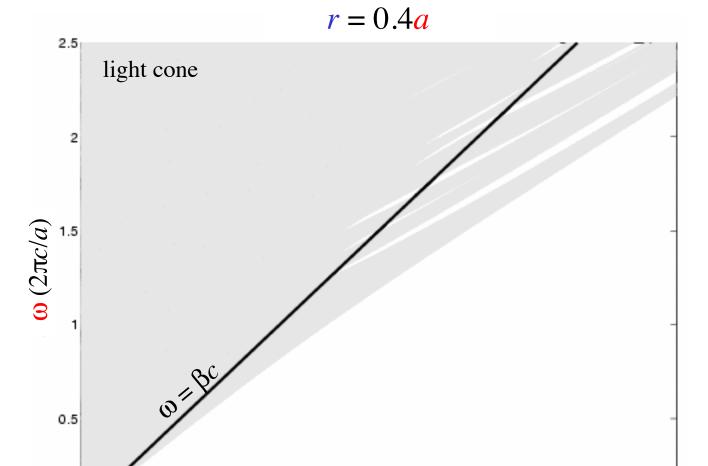












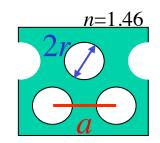
1.5

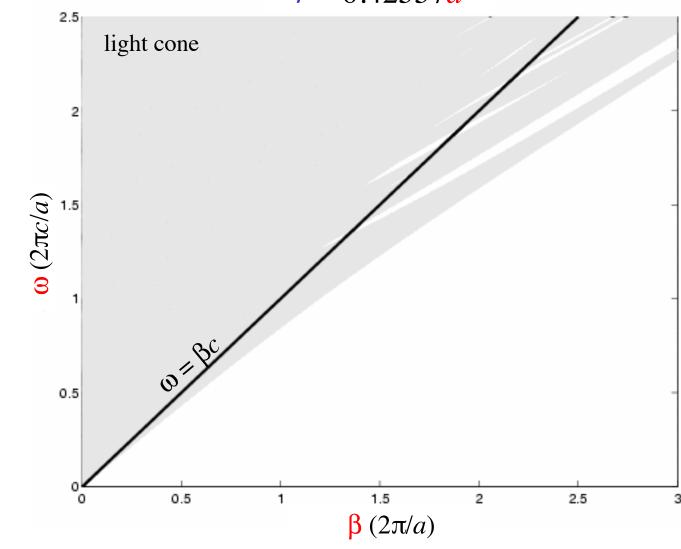
 $\beta (2\pi/a)$

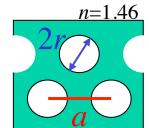
2

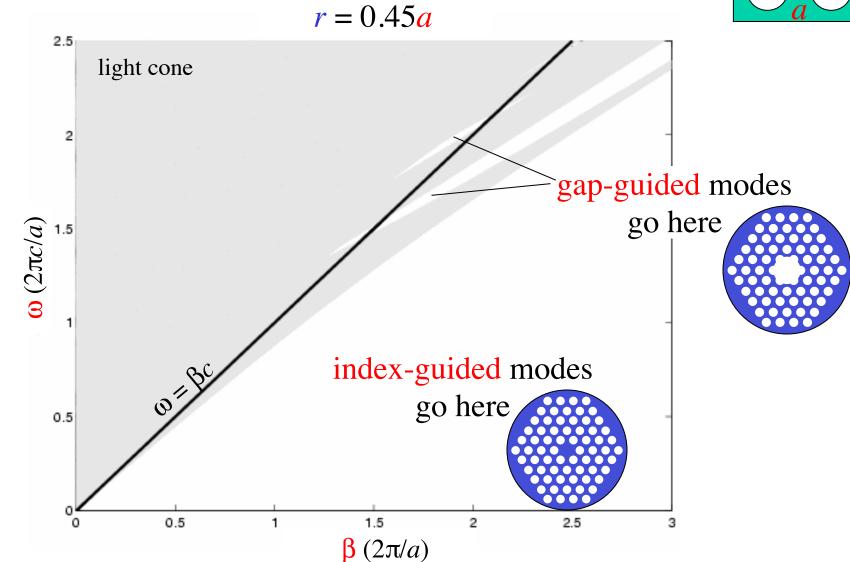
2.5

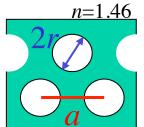
0.5

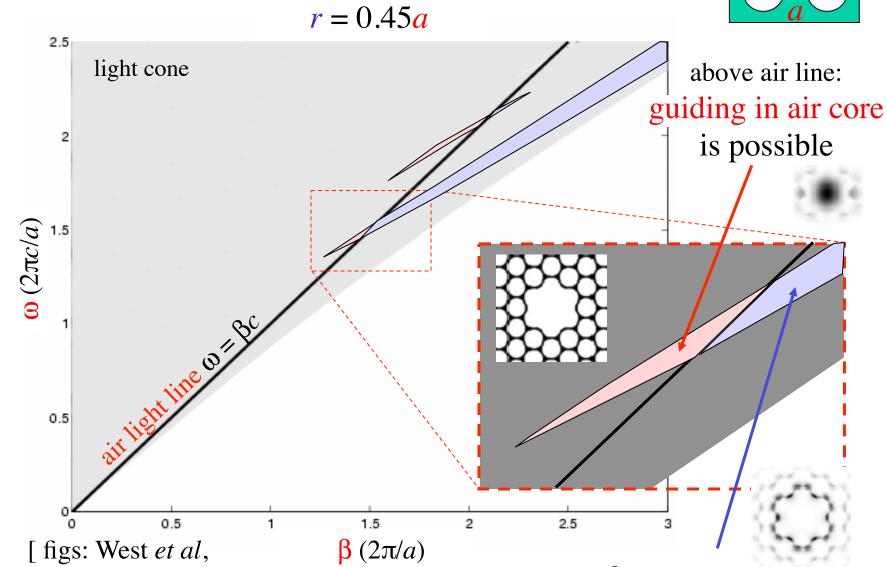








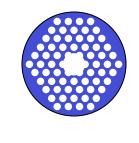


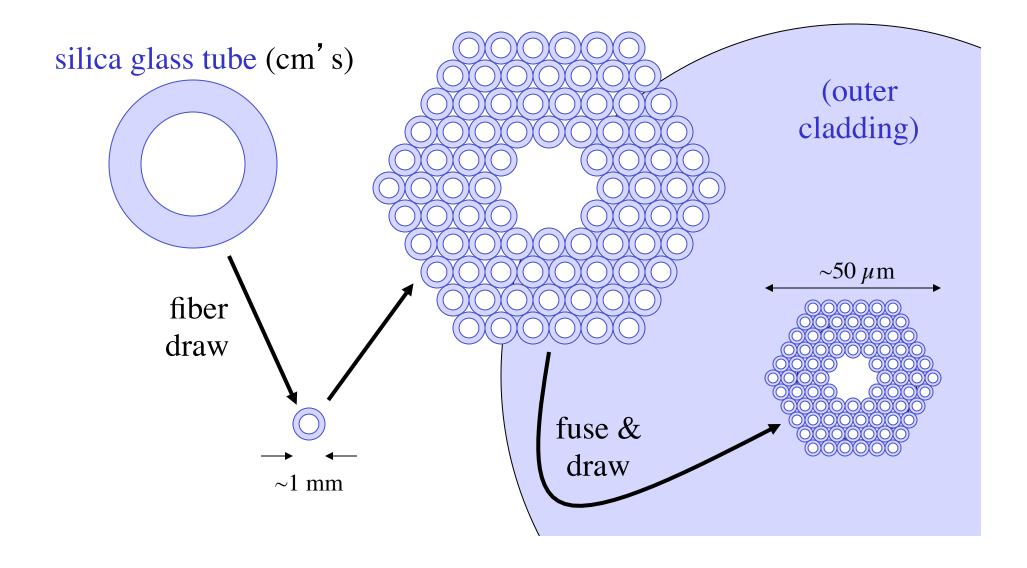


Opt. Express 12 (8), 1485 (2004)]

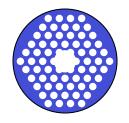
below air line: surface states of air core

Experimental Air-guiding PCF Fabrication (e.g.)

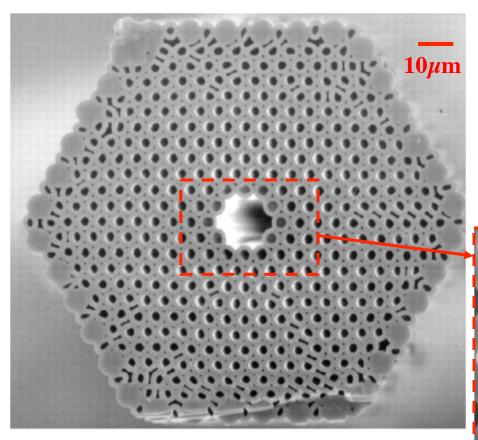


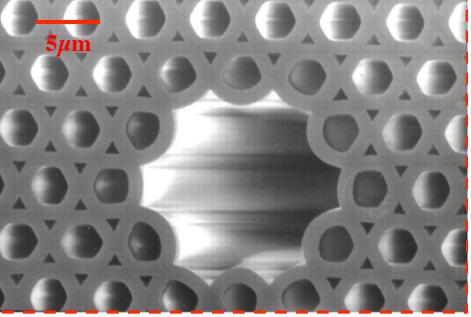


Experimental Air-guiding PCF

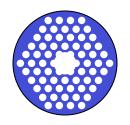


[R. F. Cregan et al., Science 285, 1537 (1999)]



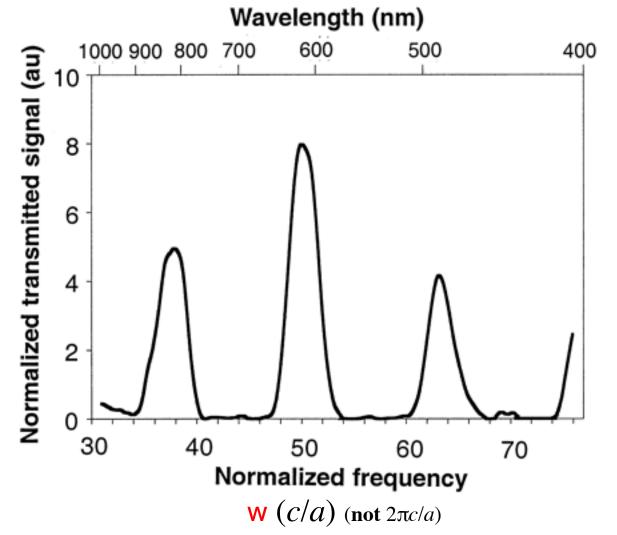


Experimental Air-guiding PCF



[R. F. Cregan et al., Science 285, 1537 (1999)]

transmitted intensity after ~ 3cm



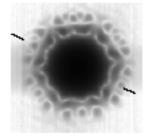
A more recent (lower-loss) example

[Mangan, et al., OFC 2004 PDP24]



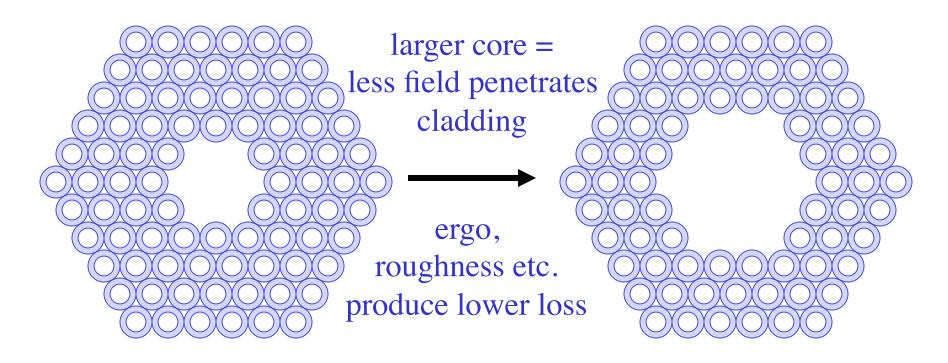
hollow (air) core (covers 19 holes)

guided field profile: (flux density)



1.7 dB/kmBlazePhotonics
over ~ $800m @ 1.57 \mu m$

Improving air-guiding losses



13dB/km

Corning

over $\sim 100 \text{m} \ @ 1.5 \mu \text{m}$

[Smith, et al., Nature 424, 657 (2003)]

1.7dB/km

BlazePhotonics

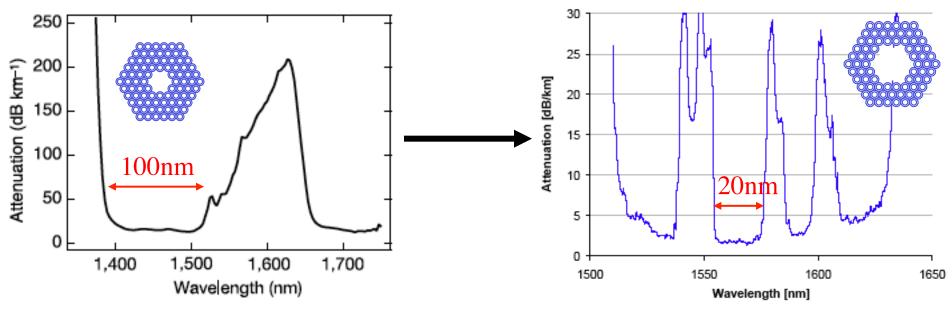
over $\sim 800 \text{m} \ @ 1.57 \mu \text{m}$

[Mangan, et al., OFC 2004 PDP24]

State-of-the-art air-guiding losses

larger core = more surface states crossing guided mode

... but surface states can be removed by proper crystal termination [West, Opt. Express 12 (8), 1485 (2004)]



13dB/km

Corning

over $\sim 100 \text{m} \ @ 1.5 \mu \text{m}$

[Smith, et al., Nature **424**, 657 (2003)]

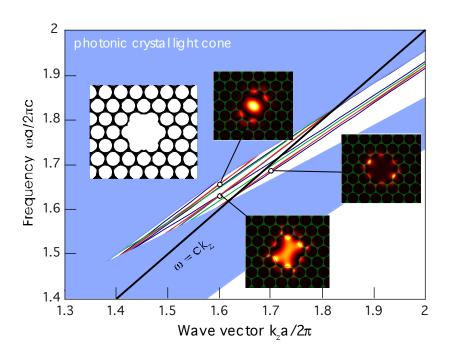
1.7dB/km

BlazePhotonics

over $\sim 800 \text{m} \ @ 1.57 \mu \text{m}$

[Mangan, et al., OFC 2004 PDP24]

Surface States vs. Termination

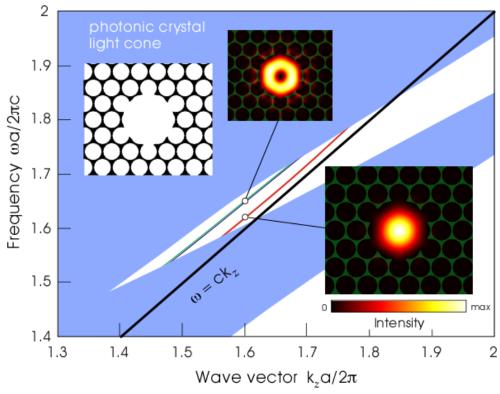


[West, Opt. Express 12 (8), 1485 (2004)]

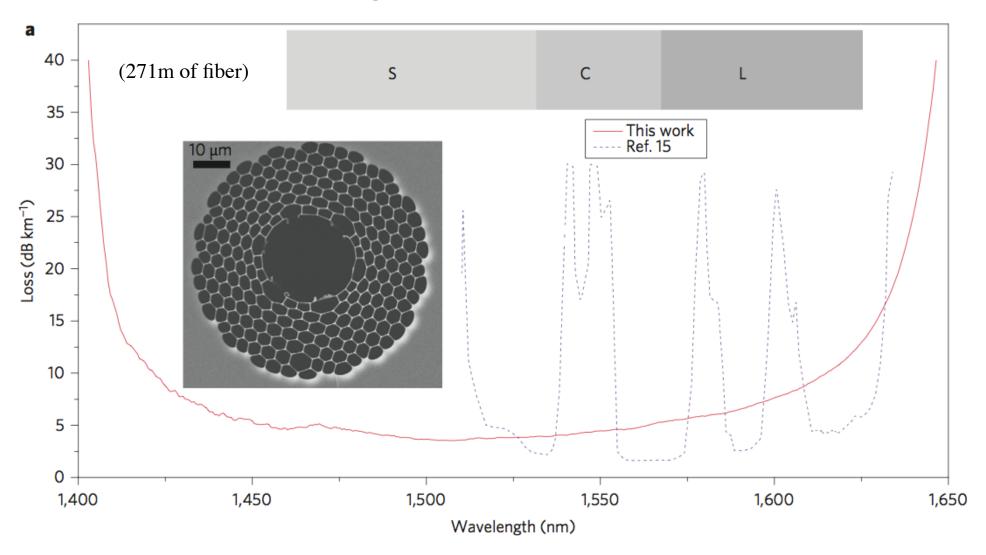
[Saitoh, Opt. Express 12 (3), 394 (2004)]

[Kim, Opt. Express 12 (15), 3436 (2004)]

changing the crystal termination can eliminate surface states

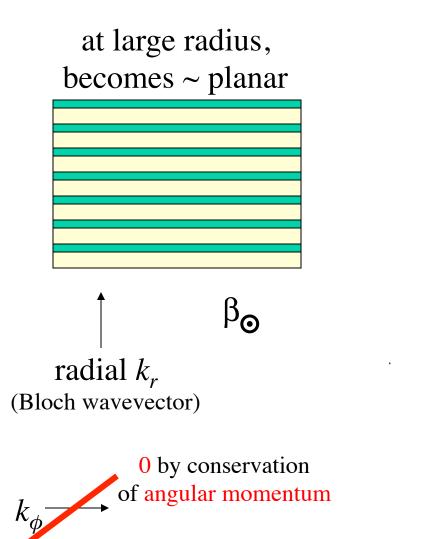


Eliminating Surface States, Ctd.

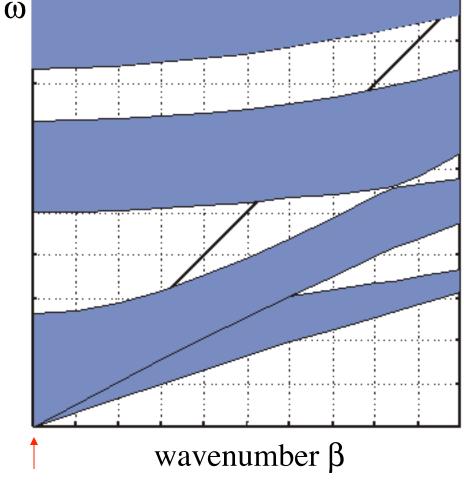


[Poletti et al., *Nature Photonics* **7**, 279–284 (2013).]

Bragg Fiber Cladding

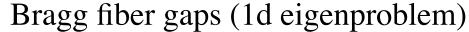


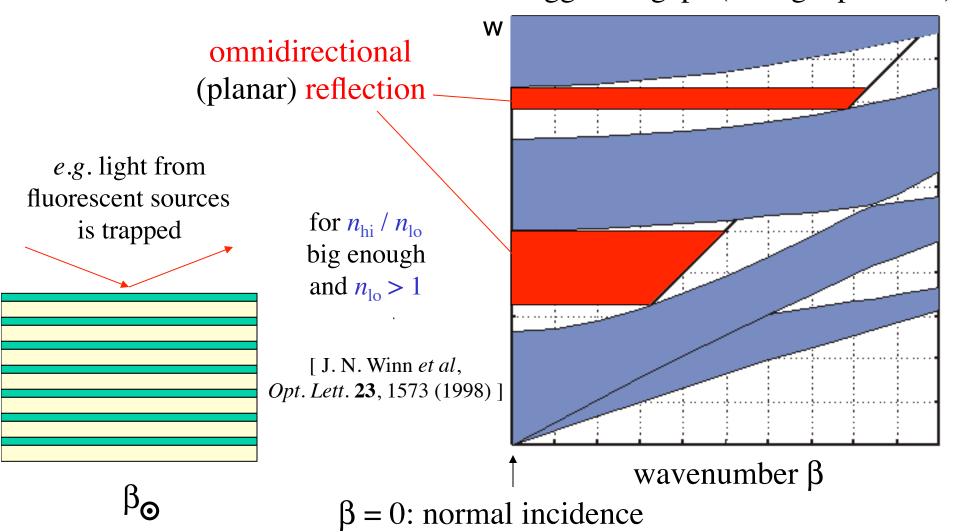
Bragg fiber gaps (1d eigenproblem)



 β = 0: normal incidence

Omnidirectional Cladding

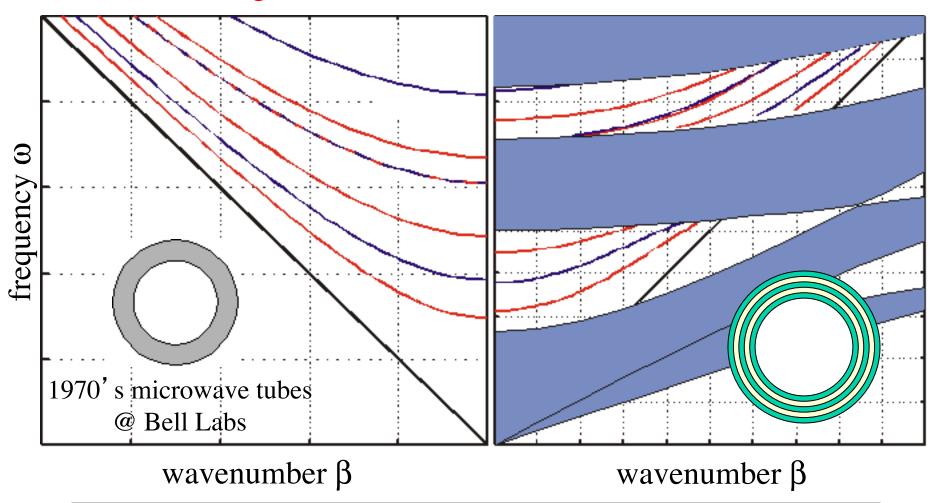




Hollow Metal Waveguides, Reborn

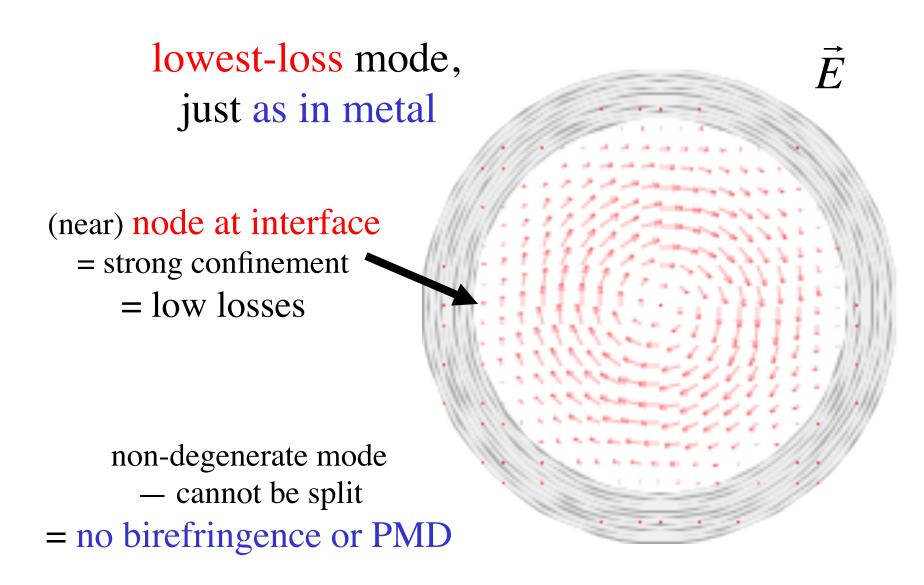
metal waveguide modes

OmniGuide fiber modes



modes are directly analogous to those in hollow metal waveguide

An Old Friend: the TE₀₁ mode

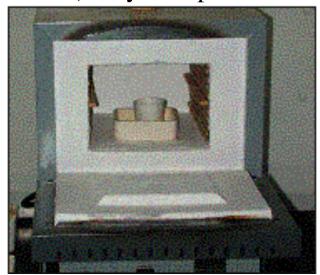


Yes, but how do you make it?

[figs courtesy Y. Fink et al., MIT]

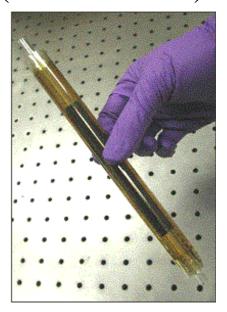
1

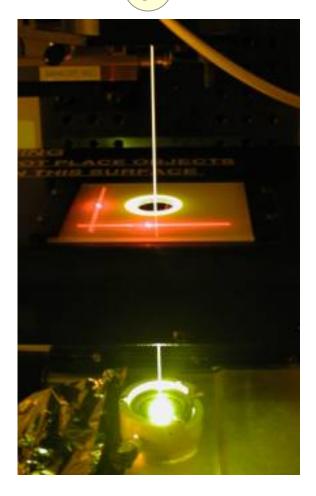
find compatible materials (many new possibilities)



chalcogenide glass, $n \sim 2.8$ + polymer (or oxide), $n \sim 1.5$ **2**

Make pre-form ("scale model")





3

fiber drawing

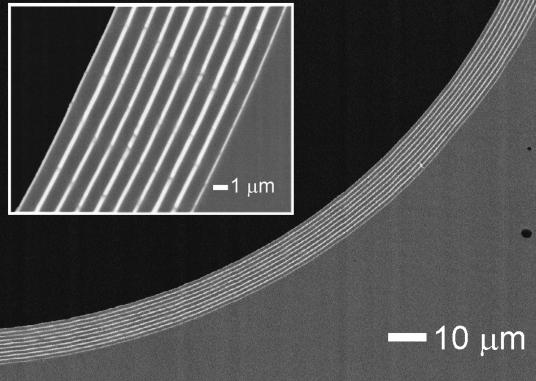
A Drawn Bandgap Fiber

[figs courtesy Y. Fink et al., MIT]

 Photonic crystal structural uniformity, adhesion, physical durability through large temperature excursions

100 μm

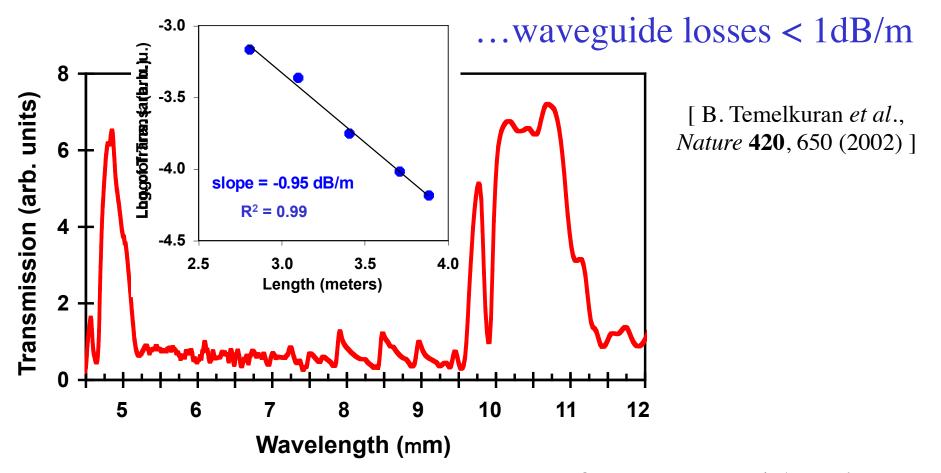
white/grey = chalco/polymer



High-Power Transmission

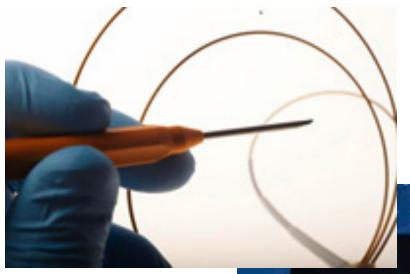
at 10.6µm (no previous dielectric waveguide)

Polymer losses @ $10.6\mu m \sim 50,000 dB/m...$

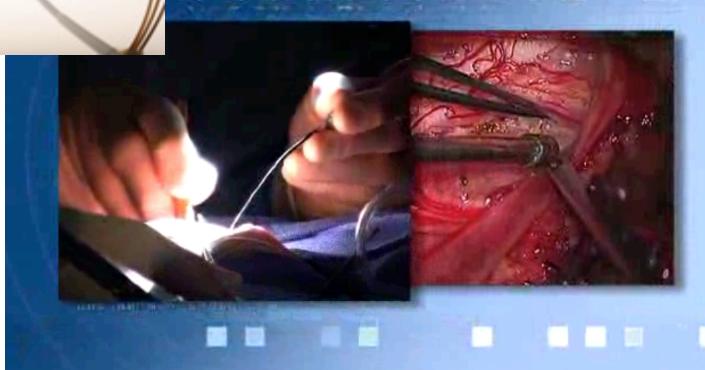


[figs courtesy Y. Fink et al., MIT]

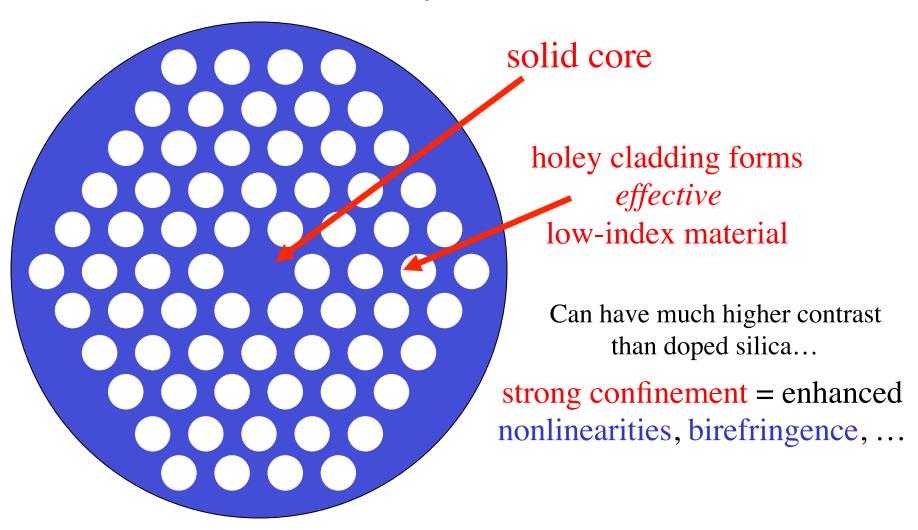
Application: Laser Surgery



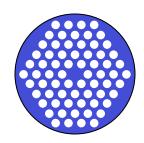
[www.omni-guide.com]



Index-Guiding PCF & microstructured fiber: Holey Fibers

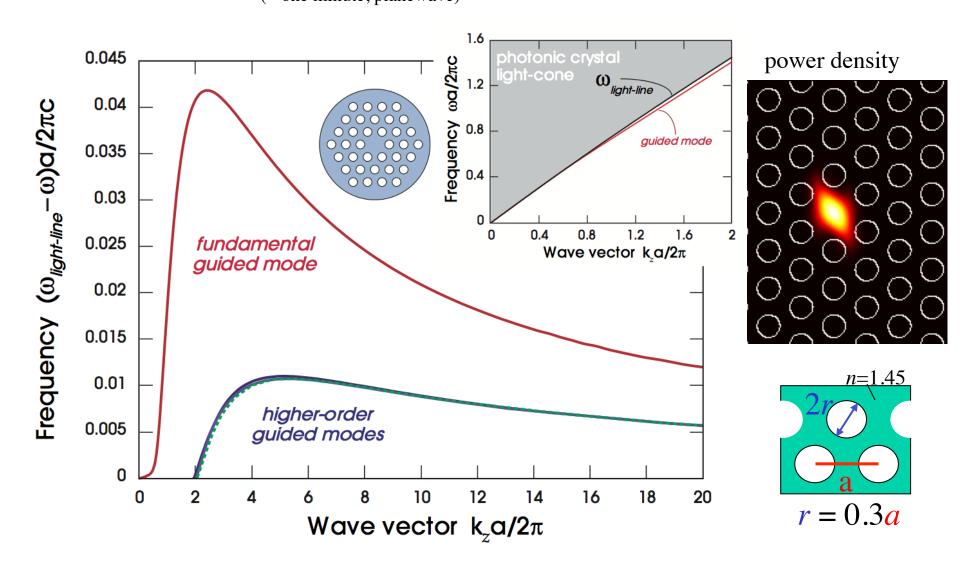


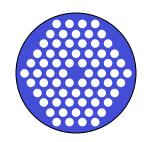
[J. C. Knight et al., Opt. Lett. 21, 1547 (1996)]



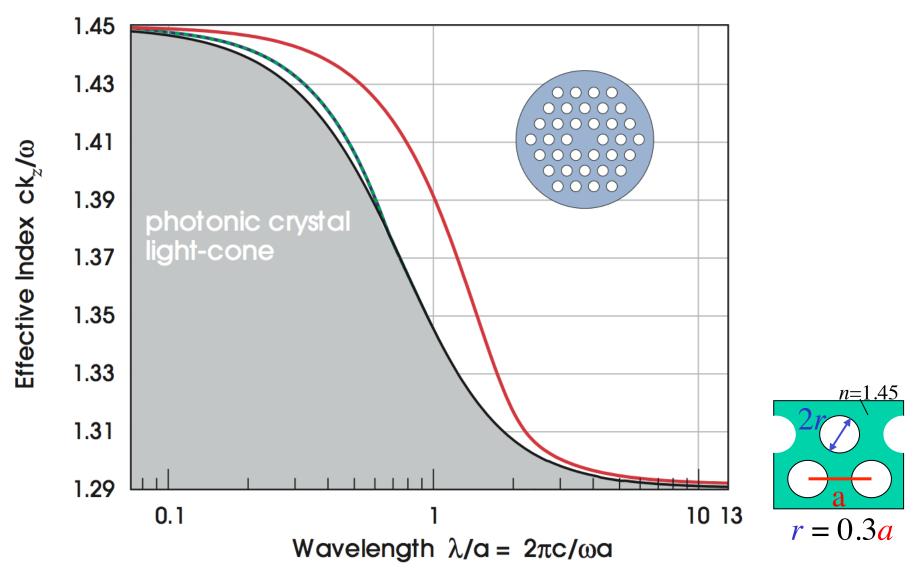
Guided Mode in a Solid Core

small computation: only lowest-w band! (~ one minute, planewave)

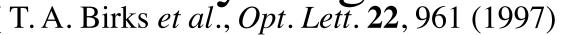




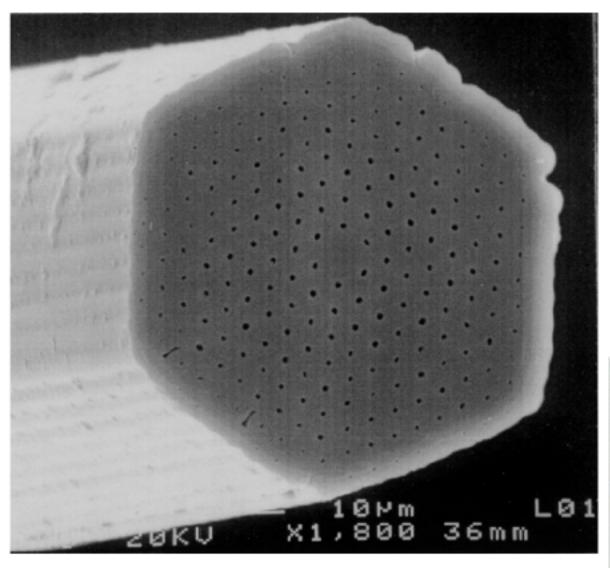
λ-dependent "index contrast"



Endlessly Single-Mode [T. A. Birks et al., Opt. Lett. 22, 961 (1997)]



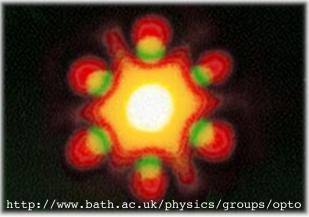




at higher ω (smaller λ), the light is more concentrated in silica

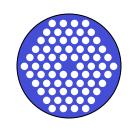
> ...so the effective index contrast is less

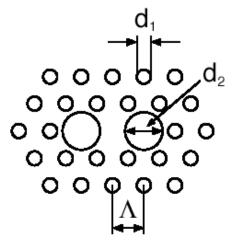
...and the fiber can stay single mode for all λ !

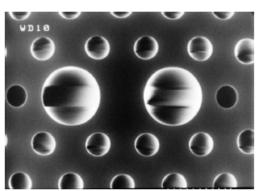


Holey Fiber PMF

(Polarization-Maintaining Fiber)







birefringence $B = \Delta \beta c/\omega$ = 0.0014

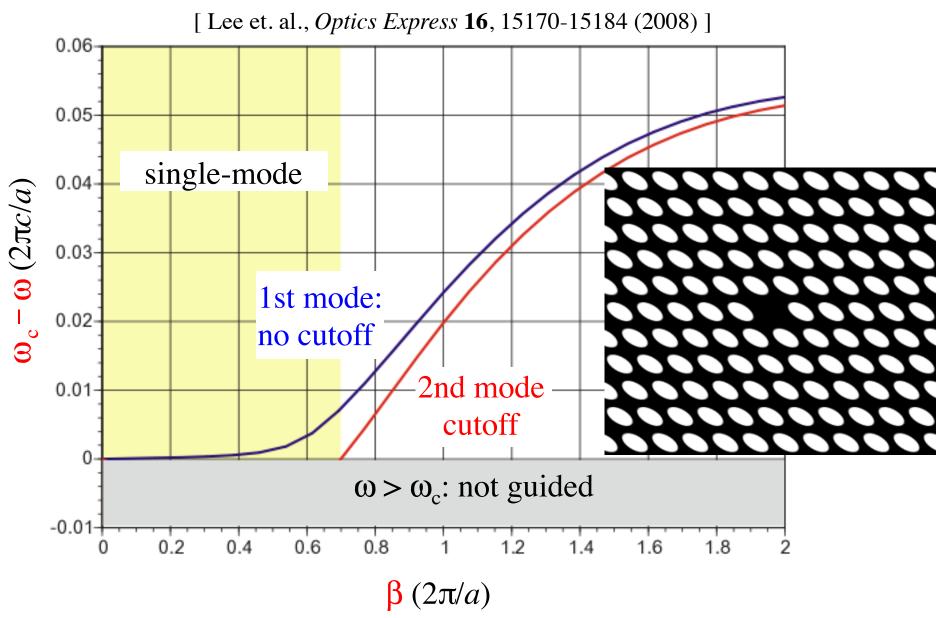
(10 times B of silica PMF)

Loss = $1.3 \text{ dB/km} @ 1.55 \mu \text{m}$ over 1.5 km

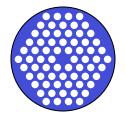
no longer degenerate with

Can operate in a single polarization, PMD = 0 (also, known polarization at output)

Truly Single-Mode Cutoff-Free Fiber



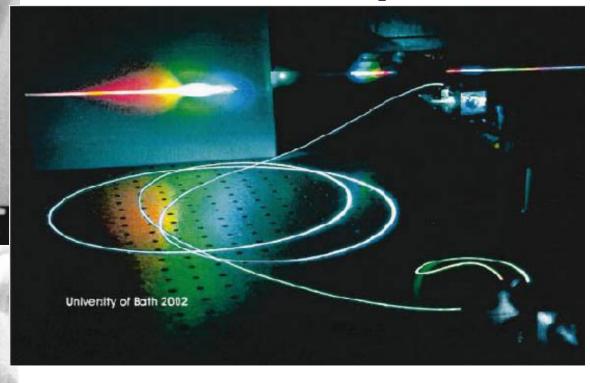
Nonlinear Holey Fibers:



Supercontinuum Generation

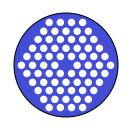
(enhanced by strong confinement + unusual dispersion)

e.g. 400–1600nm "white" light: from 850nm ~200 fs pulses (4 nJ)

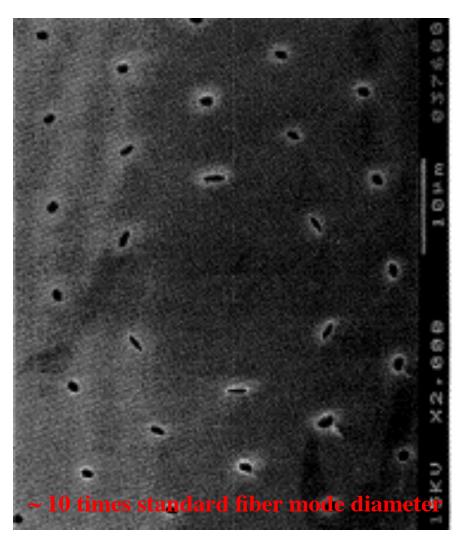


[figs: W. J. Wadsworth et al., J. Opt. Soc. Am. B 19, 2148 (2002)] [earlier work: J. K. Ranka et al., Opt. Lett. 25, 25 (2000)]

Low Contrast Holey Fibers



[J. C. Knight et al., Elec. Lett. 34, 1347 (1998)]



The holes can also form an effective low-contrast medium

i.e. light is only affected slightly by small, widely-spaced holes

This yields

large-area, single-mode
fibers (low nonlinearities)

...but bending loss is worse

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

All Imperfections are Small

(or the device wouldn't work)

- Material absorption: small imaginary $\Delta \epsilon$
- Nonlinearity: small $\Delta \varepsilon \sim |\mathbf{E}|^2$ (Kerr)
- Stress (MEMS): small $\Delta \epsilon$ or small ϵ boundary shift
- Tuning by thermal, electro-optic, etc.: small $\Delta \varepsilon$
- Roughness: small $\Delta \varepsilon$ or boundary shift

Weak effects, long distance/time: hard to compute directly
— use semi-analytical methods

Semi-analytical methods for small perturbations

- Brute force methods (FDTD, etc.): expensive and give limited insight
- Semi-analytical methods
 - numerical solutions for perfect system
 - + analytically bootstrap to imperfections

... coupling-of-modes, perturbation theory, Green's functions, coupled-wave theory, ...

Perturbation Theory

for Hermitian eigenproblems

given eigenvectors/values:
$$\hat{O}|u\rangle = u|u\rangle$$

...find change $\Delta u \& \Delta |u\rangle$ for small $\Delta \hat{O}$

Solution:

expand as power series in $\Delta \hat{O}$

$$\Delta u = 0 + \Delta u^{(1)} + \Delta u^{(2)} + \dots$$

$$\Delta u^{(1)} = \frac{\langle u | \Delta \hat{O} | u \rangle}{\langle u | u \rangle}$$

&
$$\Delta |u\rangle = 0 + \Delta |u\rangle^{(1)} + \dots$$

(first order is usually enough)

Perturbation Theory

for electromagnetism

$$\Delta \omega^{(1)} = \frac{c^2}{2\omega} \frac{\langle \mathbf{H} | \Delta \hat{A} | \mathbf{H} \rangle}{\langle \mathbf{H} | \mathbf{H} \rangle}$$
$$= -\frac{\omega}{2} \frac{\int \Delta \varepsilon |\mathbf{E}|^2}{\int c |\mathbf{E}|^2}$$

...e.g. absorption gives imaginary $\Delta \omega$ = decay!

or:
$$\Delta k^{(1)} = \Delta \omega^{(1)} / v_g$$

$$v_g = \frac{d\omega}{dk}$$

$$\Rightarrow \frac{\Delta \omega^{(1)}}{\omega} = -\frac{\Delta n}{n} \cdot (\text{fraction of } \varepsilon |\mathbf{E}|^2 \text{ in } \Delta n)$$

A Quantitative Example

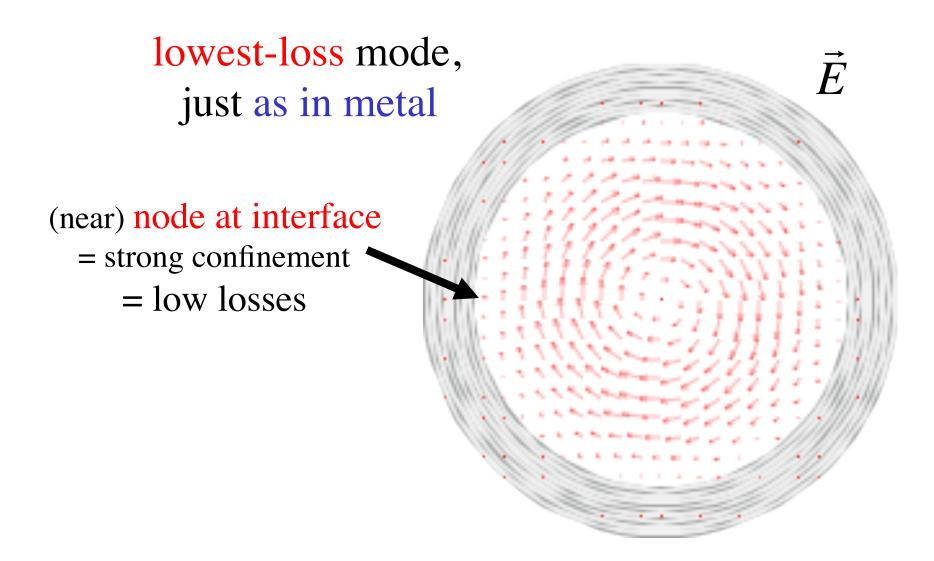
...but what about the cladding?

Gas can have low loss & nonlinearity

...some field penetrates!

& may need to use very "bad" material to get high index contrast

Review: the TE₀₁ mode



Suppressing Cladding Losses

Mode Losses

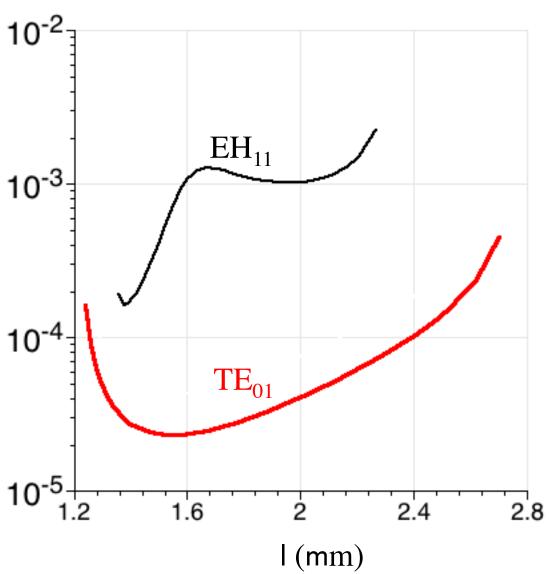
÷

Bulk Cladding Losses

Large differential loss

TE₀₁ strongly suppresses cladding absorption

(like ohmic loss, for metal)



[Johnson, Opt. Express 9, 748 (2001)]

Quantifying Nonlinearity

 $\Delta\beta$ ~ power $P \sim 1$ / lengthscale for nonlinear effects

$$\gamma = \Delta \beta / P$$

= nonlinear-strength parameter determining self-phase modulation (SPM), four-wave mixing (FWM), ...

(unlike "effective area," tells where the field is, not just how big)

Suppressing Cladding Nonlinearity

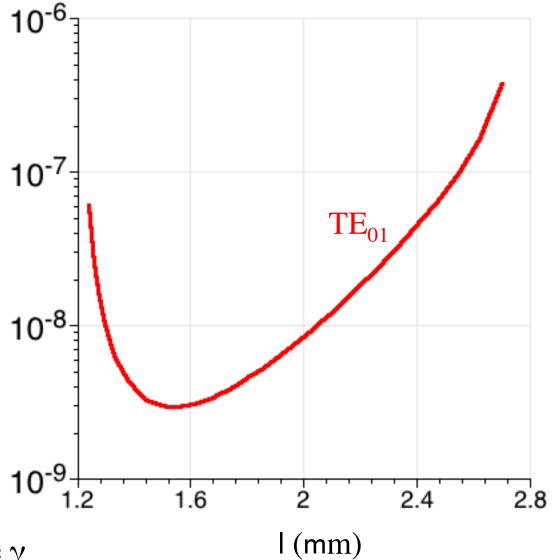
[Johnson, Opt. Express 9, 748 (2001)]

Mode Nonlinearity*

Cladding Nonlinearity

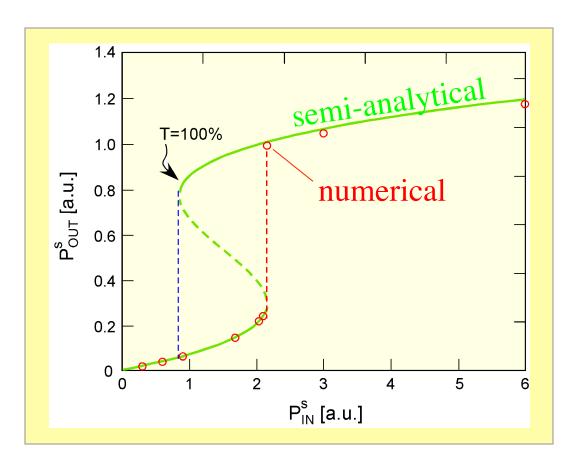
Will be dominated by nonlinearity of air

~10,000 times weaker than in silica fiber (including factor of 10 in area)



* "nonlinearity" =
$$\Delta \beta^{(1)} / P = \gamma$$

A Linear Nonlinear "Transistor"

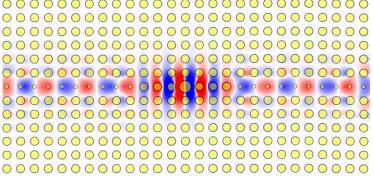


Bistable (hysteresis) response

Entire nonlinear response from *one* linear calculation:

Lorentzian mode w, Q

Kerr $\Delta \omega \sim |\mathbf{E}|^2$ (to first order)



[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

Tuning Microcavities

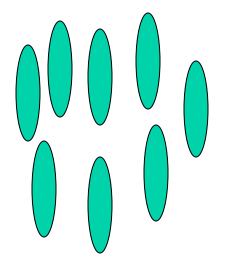
- Correcting for fabrication error:
 - narrow-band filters require 10^{-3} or better accuracy
 - ⇒ fabricate "close enough" and tune post-fabrication
 - ... want: large tunability, slow speeds
- Switching/routing:
 - require small tunability (e.g. by bandwidth: 10^{-3})
 - need high speeds (ideally, ns or better)

Many mechanisms to change cavity index or shape: liquid crystal, thermal, nonlinearities, carrier density, MEMS...

"easy" theory for
$$\Delta n$$
 tuning: $\frac{\Delta \omega^{(1)}}{\omega} = -\frac{\Delta n}{n} \cdot (\text{fraction of } \varepsilon |\mathbf{E}|^2 \text{ in } \Delta n)$

Liquid-crystal Tuning

One of the earliest proposals: [Busch & John, *PRL* **83**, 967 (1999).]



Asymmetric particles oriented by external field: -n on (two) "ordinary" axes can differ from "extraordinary-axis" n by $\Delta n \sim 15\%$

Response time: 20–200µs [Shimoda, APL 79, 3627 (2001).]

Difficulty: filling entire photonic crystal with liquid $(n \sim 1.5)$ usually destroys the gap

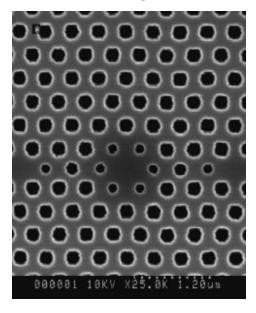
Possible solutions:

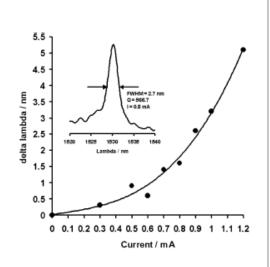
- use thin LC coating [Busch, 1999], but small Δ frequency
- use micro-fluidic droplet only in cavity?

Thermal tuning

using thermal expansion, phase transitions, or most successfully, thermo-optic coefficient (dn/dT)

[Chong, PTL 16, 1528 (2004).]



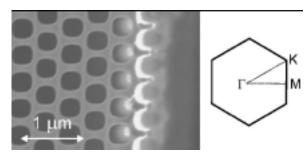


5 nm tuning (0.3%) in Si time (estimated) < 1 ms

[Asano, *Elec. Lett.* **41** (1) (2005).] Si slab thickness: 250 nm 5 nm tuning (0.3%)time $\sim 20 \mu s$

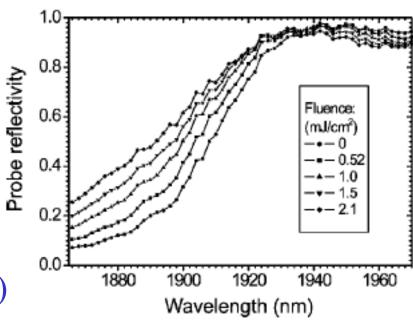
Tuning by Free-carrier Injection

[Leonard, *PRB* **66**, 161102 (2002).]



macroporous Si

optical carrier injection by 300fs pulses at 800nm pump wavelength Measured Δ reflectivity from band-edge shift at 1.9 μ m



31 nm wavelength shift (2%) rise time ~ 500 fs

but affects absorption too

Tuning by Optical Nonlinearities

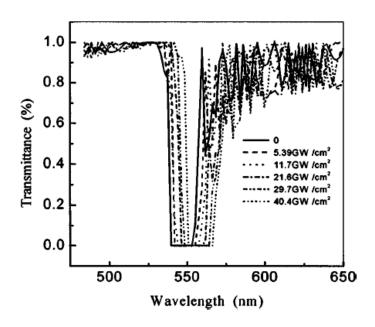
Pockels effect ($\Delta n \sim E$)

[Takeda, *PRE* **69**, 016605 (2004).]

Theory only

Kerr effect ($\Delta n \sim |\mathbf{E}|^2$)

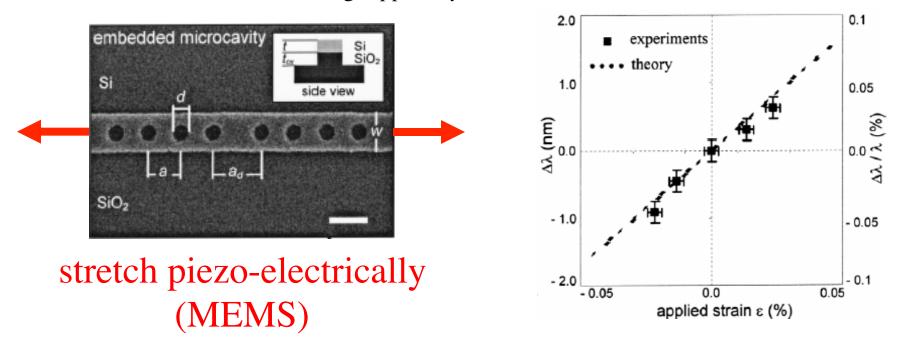
[Hu, APL **83**, 2518 (2003).]



fcc lattice of polystyrene spheres
(incomplete gap)
13nm shift @ 540nm (2.4%)
response time ~ 10 ps

Tuning by MEMS deformation

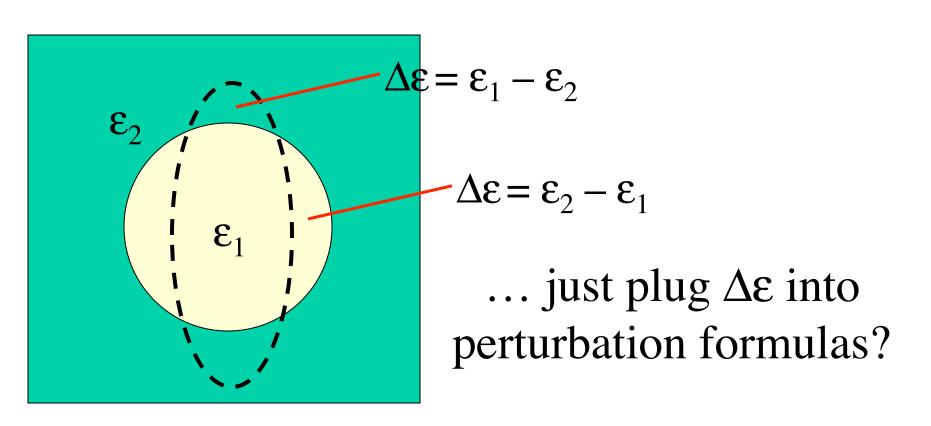
[C.-W. Wong, Appl. Phys. Lett. 84, 1242 (2004).]



1.5 nm shift @ 1.5μ m (0.1%) response-time not measured, expected in "microseconds" range

Theory tricky: *not* a Δ n shift

Boundary-perturbation theory

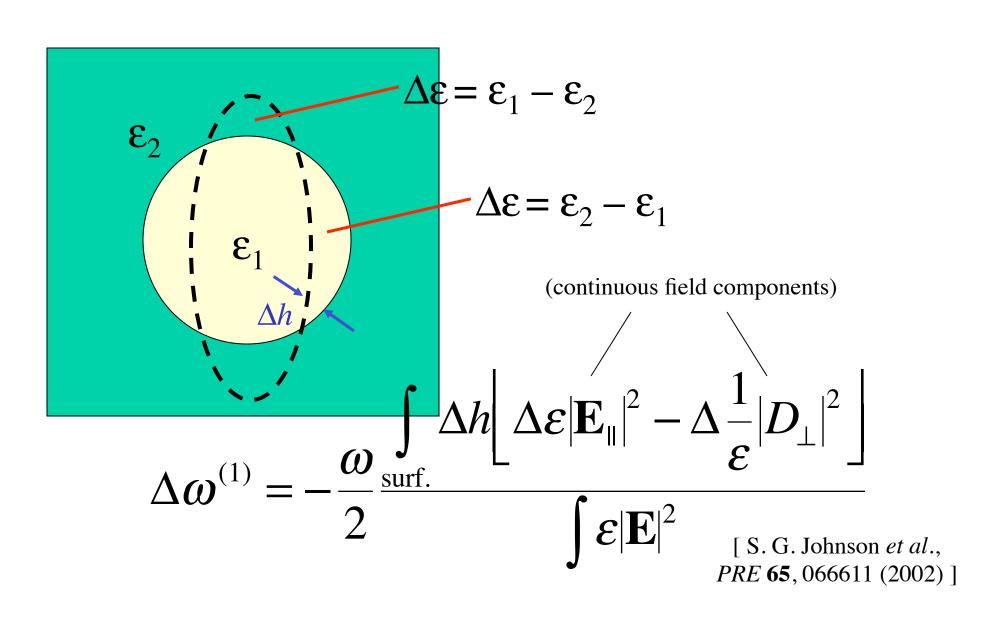


FAILS for high index contrast!

beware field discontinuity...
fortunately, a simple correction exists

[S. G. Johnson *et al.*, *PRE* **65**, 066611 (2002)]

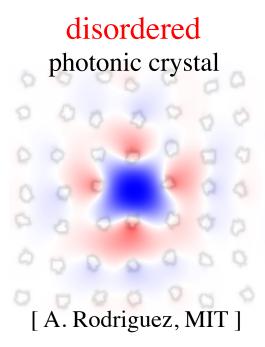
Boundary-perturbation theory



Surface roughness disorder?

[http://www.physik.uni-wuerzburg.de/TEP/Website/groups/opto/etching.htm]

loss limited by disorder (in addition to bending)



[S. Fan et. al., J. Appl. Phys. 78, 1415 (1995).]

small (bounded) disorder does not destroy the bandgap [A. Rodriguez et. al., Opt. Lett. 30, 3192 (2005).]

Q limited only by crystal size (for a 3d complete gap) ...

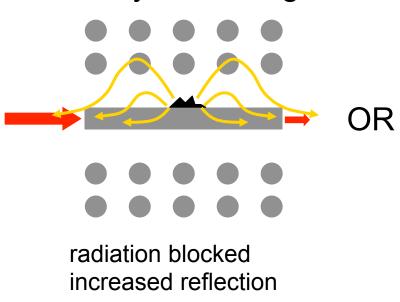
... but waveguides have more trouble ...

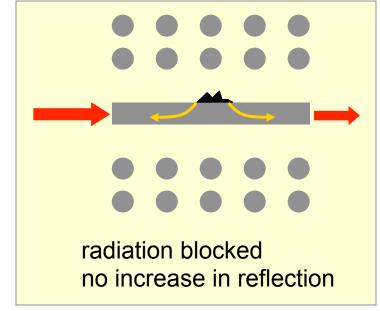
Effect of Gap on Disorder (e.g. Roughness) Loss?

[with M. Povinelli]

index-guided waveguide

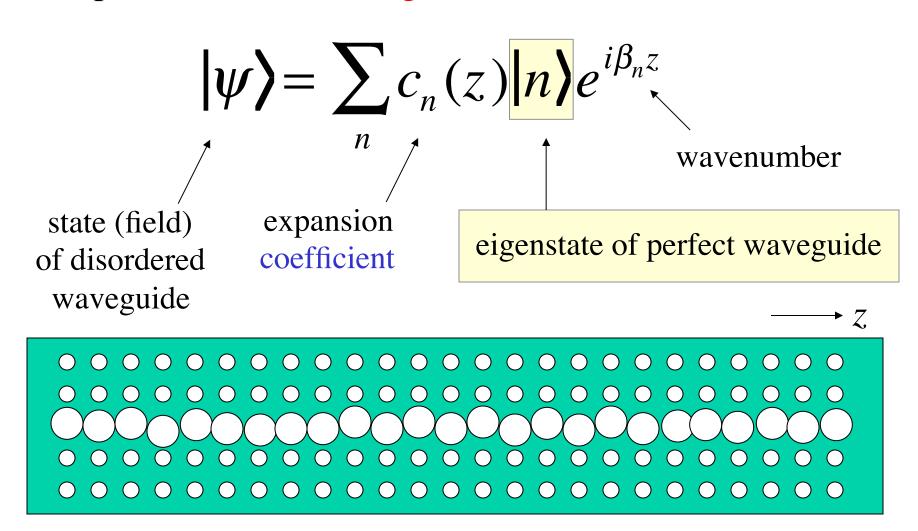
photonic-crystal waveguide: which picture is correct?





Coupled-mode theory

Expand state in ideal eigenmodes, for constant w:



What's New in Coupled-Mode Theory?

- Traditional methods (Marcuse, 1970): weak periodicity only
- Strong perodicity (Bloch modes expansion):
 - de Sterke *et al.* (1996): coupling in *time* (nonlinearities)
 - Russell (1986): weak perturbations, slowly varying only

```
2002+: exact extension, for z-dependent (constant ω), and: arbitrary periodicity, arbitrary index contrast (full vector), arbitrary disorder [ and/or tapers ]
```

[S. G. Johnson et al., PRE 66, 066608 (2002).] [M. Skorobogatiy et al., [M. L. Povinelli et al., APL 84, 3639 (2004).] Opt. Express 10, 1227 (2002).]

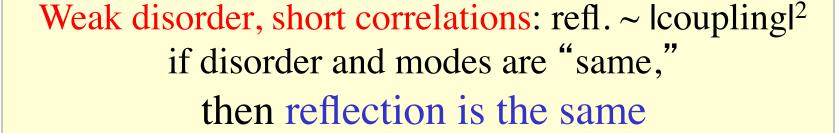
Coupled-wave Theory

(skipping all the math...)

$$\frac{dc_n}{dz} = \sum_{m \neq n} [\text{coupling}]_{m,n} e^{i\Delta\beta z} c_{m \text{mode expansion coefficients}}$$

Depends only on: [M. L. Povinelli et al., APL 84, 3639 (2004).]

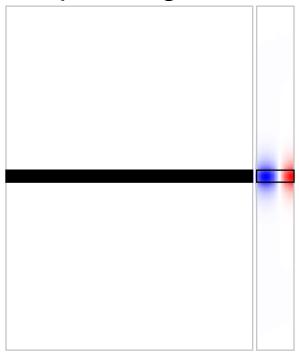
- strength of disorder
- mode field at disorder
- group velocities



A Test Case

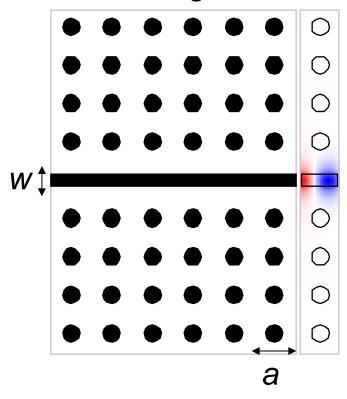
[M. L. Povinelli et al., APL 84, 3639 (2004).]

strip waveguide



index-guided

PC waveguide

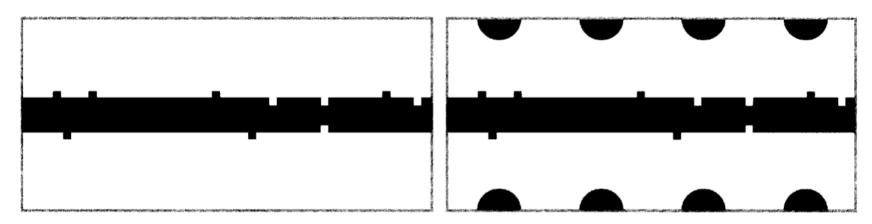


gap-guided, same $\omega(\beta)$

A controlled comparison: gap is the only difference.

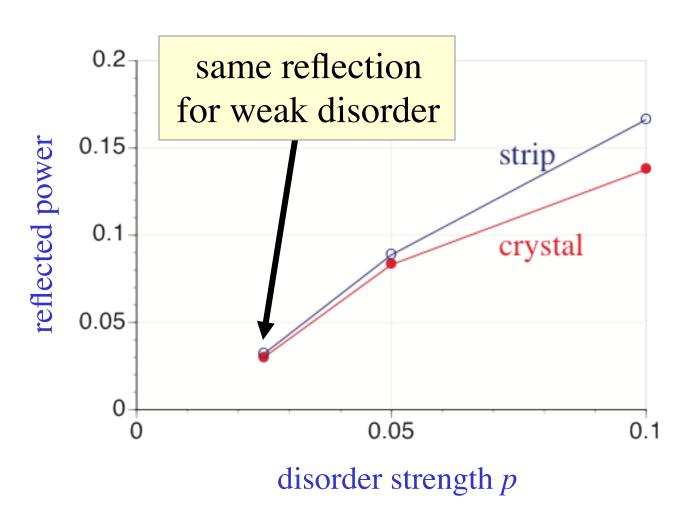
A Test Case

pixels added/removed with probability p

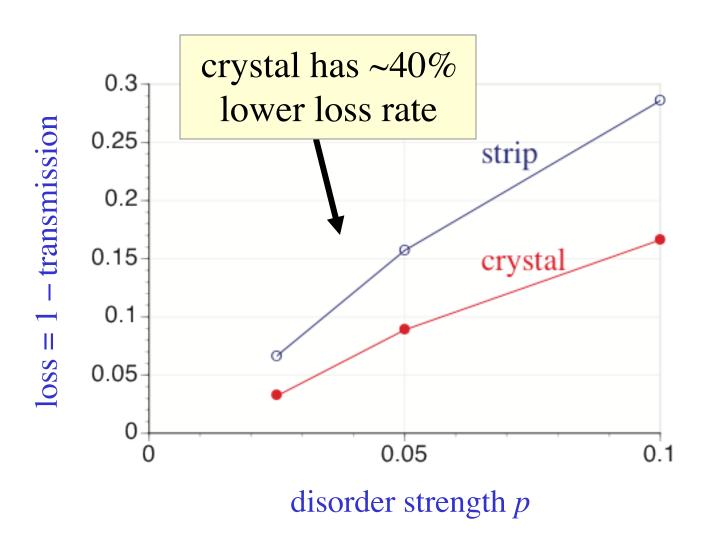


same disorder in both cases, averaged over many FDTD runs

Test Case Results: Reflection



Test Case Results: Total Loss



photonic bandgap (all other things equal)

= unambiguous improvement

But, the news isn't all good...

Group-velocity (v) dependence other things being equal

```
[S. G. Johnson et al., Proc. 2003 Europ. Symp. Phot. Cryst. 1, 103.] [S. Hughes et al., Phys. Rev. Lett. 94, 033903 (2005).]
```

absorption/radiation-scattering loss (per distance) ~ 1/v

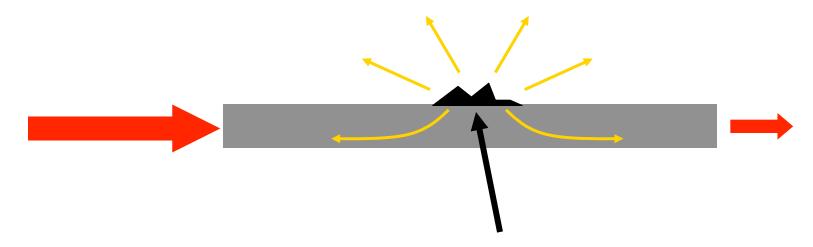
```
reflection loss

(per distance) \sim 1/v^2

(per time) \sim 1/v
```

Losses a challenge for slow light...

An Easier Way to Compute Loss



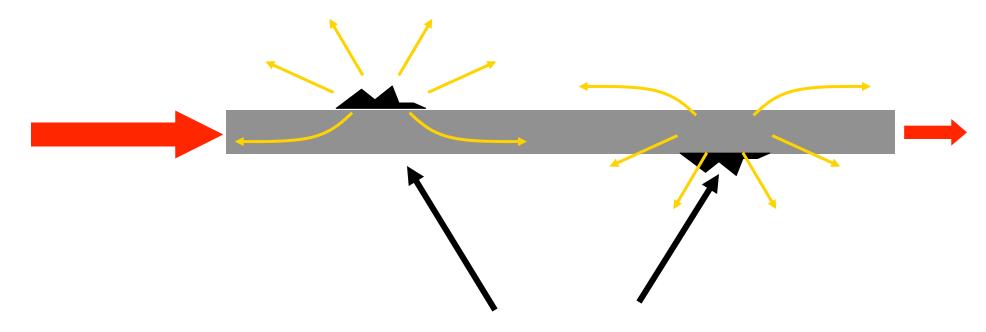
imperfection acts like a volume current

$$\vec{J} \sim \Delta \varepsilon \vec{E}_0$$

volume-current method

(i.e., first Born approx. to Green's function)

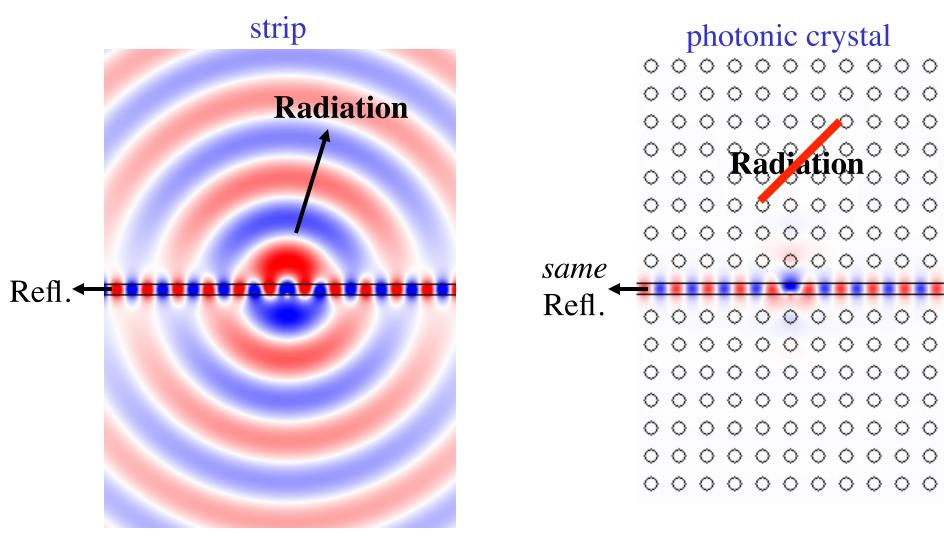
An Easier Way to Compute Loss



uncorrelated disorder adds incoherently

So, compute power P radiated by *one* localized source J, and loss rate \sim P * (mean disorder strength)

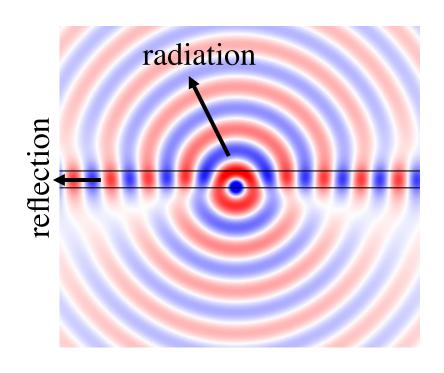
Losses from Point Scatterers



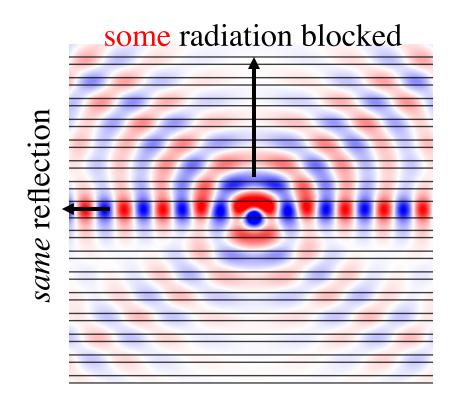
Loss rate ratio = (Refl. only) / (Refl. + Radiation) = 60%

Effect of an Incomplete Gap

on uncorrelated surface roughness

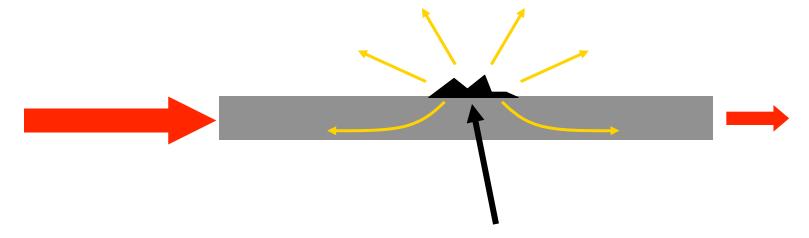


Conventional waveguide (matching modal area)



...with Si/SiO₂ Bragg mirrors (1D gap)
50% lower losses (in dB)
same reflection

Failure of the Volume-current Method

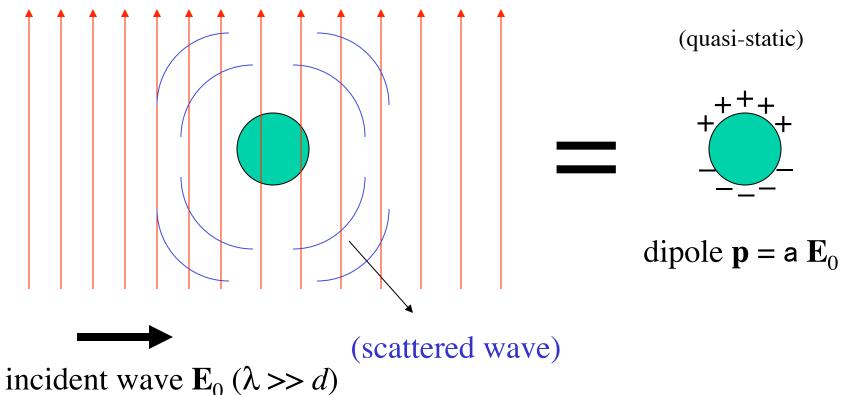


imperfection acts like a volume current

Incorrect for large $\Delta \varepsilon$ (except in 2d TM polarization)

Scattering Theory (for small scatterers)

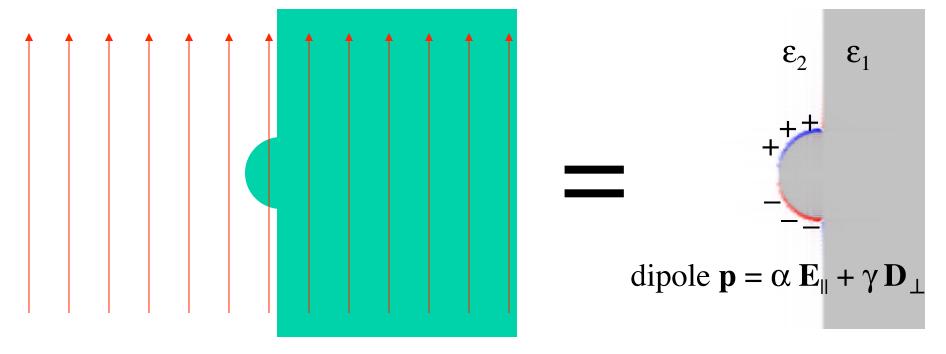
[e.g. Jackson, Classical Electrodynamics]



sphere: effective point current $\mathbf{J} \sim \mathbf{p} / \Delta V$ $= 3 \Delta \varepsilon \mathbf{E}_0 / (\Delta \varepsilon + 3)$

 $=\Delta \varepsilon \mathbf{E}_0$ for small $\Delta \varepsilon$, but very different for large $\Delta \varepsilon$

Corrected Volume Current for Large De



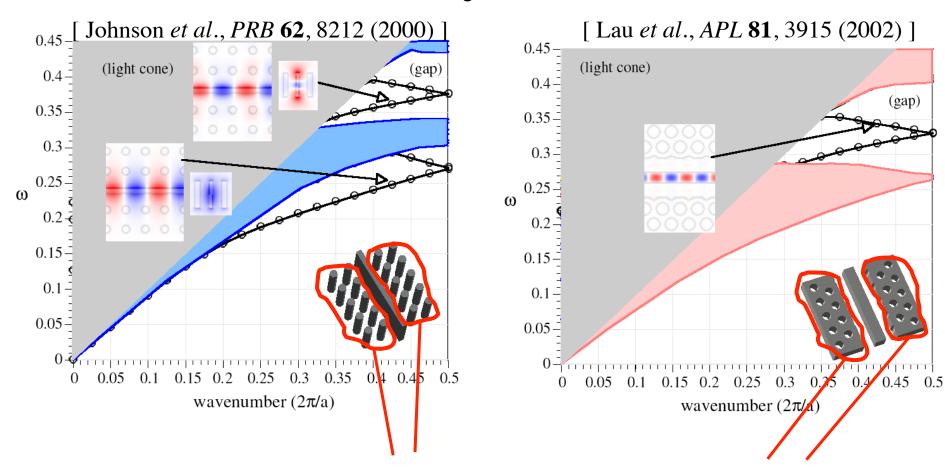
unperturbed field E

(compute polarizability *numerically*)

effective point current $\mathbf{J} \sim (\frac{\varepsilon_1 + \varepsilon_2}{2} \mathbf{p}_{\parallel} + \varepsilon \mathbf{p}_{\perp}) / \Delta V$

[S. G. Johnson *et al.*, *Applied Phys. B* **81**, 283 (2005).]

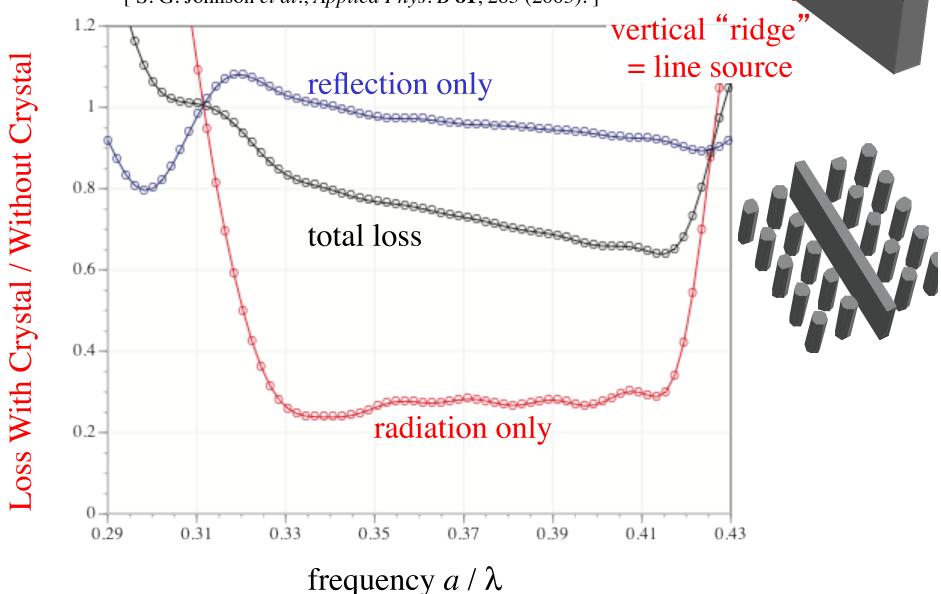
Strip Waveguides in Photonic-Crystal Slabs (3d)



How does incomplete 3d gap affect roughness loss?

[S. G. Johnson et al., Applied Phys. B 81, 283 (2005).]

Rods: Surface-corrugation [S. G. Johnson et al., Applied Phys. B 81, 283 (2005).]



Holes: Surface-corrugation [S. G. Johnson et al., Applied Phys. B 81, 283 (2005).] vertical "ridge" Loss With Crystal / Without Crystal = line source reflection only total loss radiation only

0.22

0.24

0.26

0.28

0.3

0.32

frequency a / λ

0.34

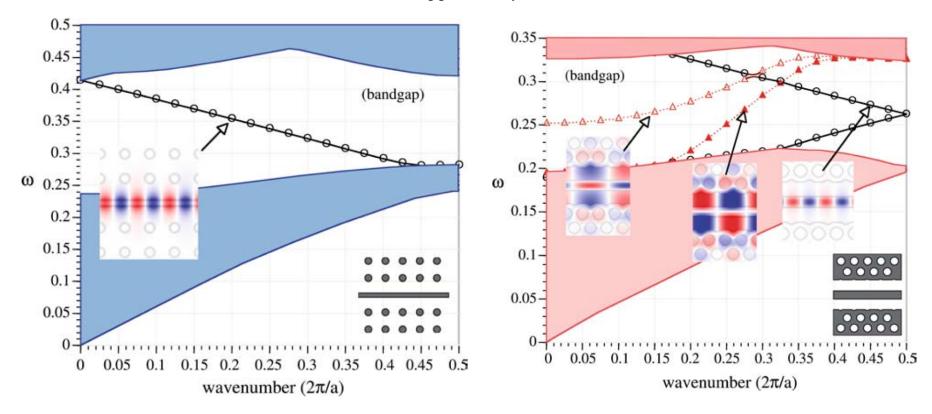
0.36

0.38

0.4

Rods vs. Holes? Answer is in 2d.

[S. G. Johnson et al., Applied Phys. B 81, 283 (2005).]



The hole waveguide is not single mode

crystal introduces new modes (in 2d)
 and new leaky modes (in 3d)

Controlled Deviations: Tapers

[Johnson et al., PRE 66, 066608 (2002)]

• An adiabatic theorem for periodic systems:

slow transitions = 100% transmission

— with simple conditions = design criteria

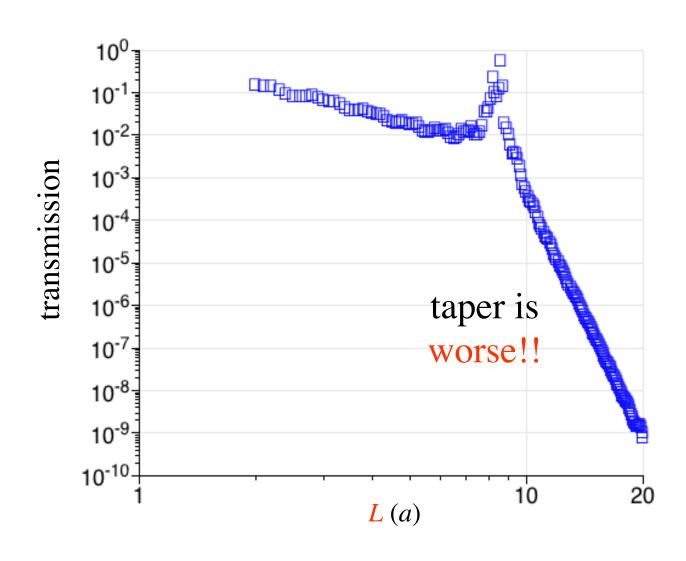
In doing so, we got something more:

a new coupled-mode theory for periodic systems
= efficient modeling +
results for other problems

A simple problem?

A simple problem?

L = 10a:



What happened to the adiabatic theorem?

[Johnson et al., PRE 66, 066608 (2002)]

There is an adiabatic theorem! ...but with two conditions

At all intermediate taper points, the operating mode:

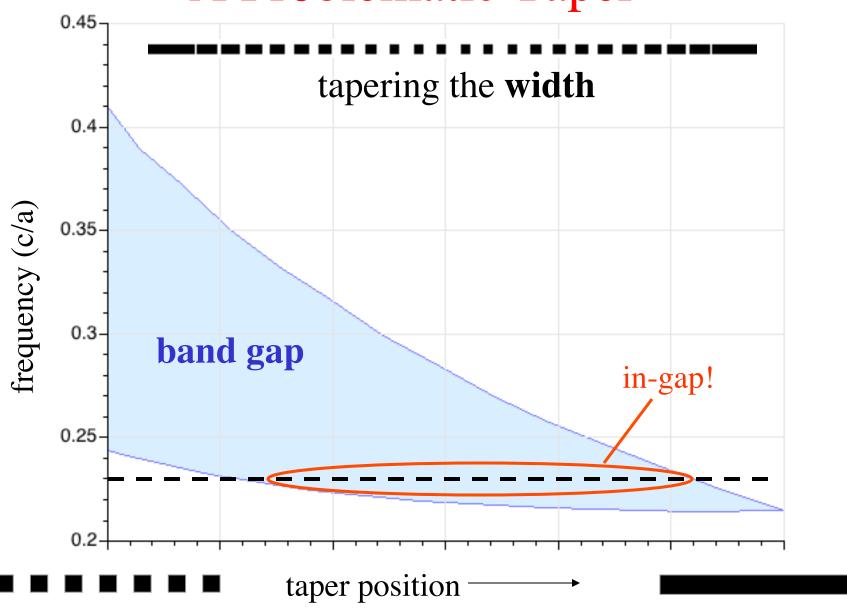
Must be propagating (not in the band gap).

Must be guided (not part of a continuum).

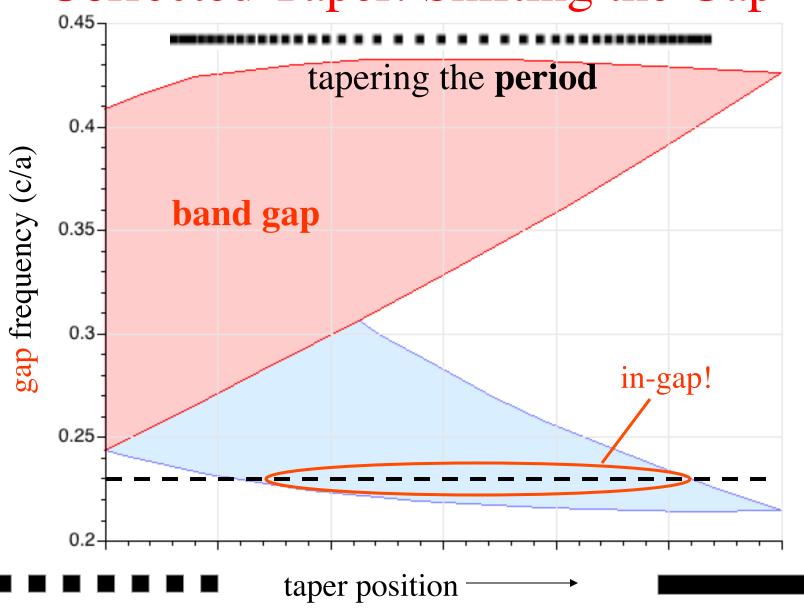
Intuitive!

Easy to violate accidentally in photonic crystals.

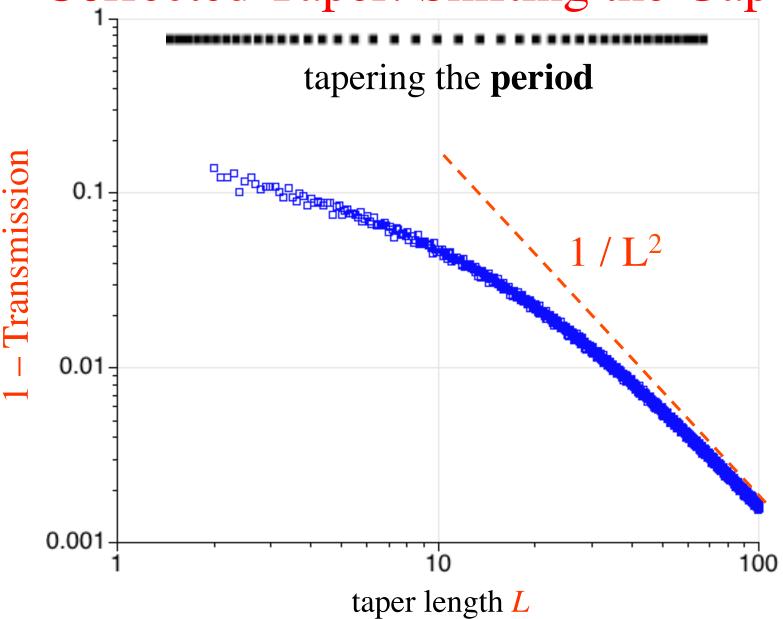
A Problematic Taper



Corrected Taper: Shifting the Gap



Corrected Taper: Shifting the Gap



There is an adiabatic theorem! ...but with two conditions

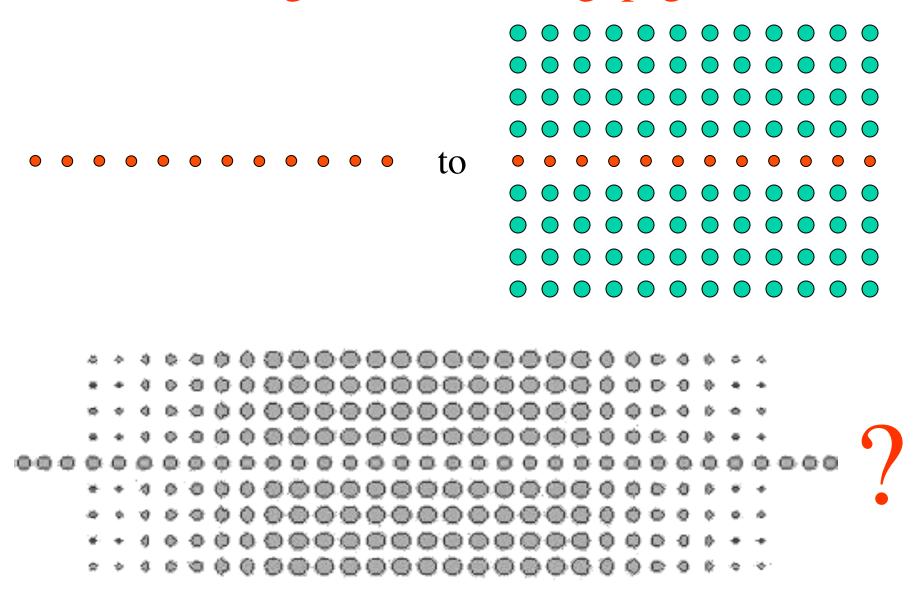
At all intermediate taper points, the operating mode:

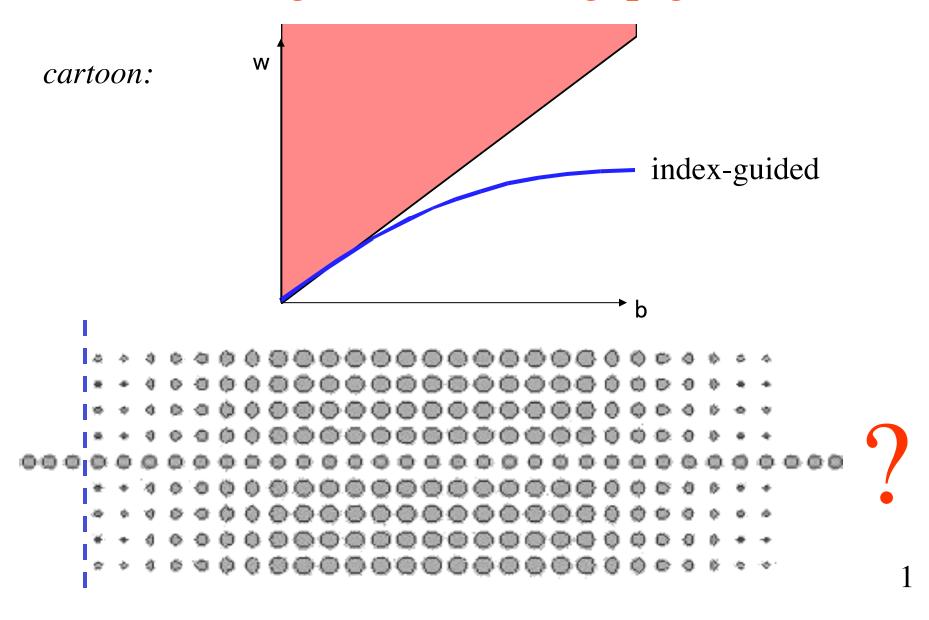
Must be propagating (not in the band gap).

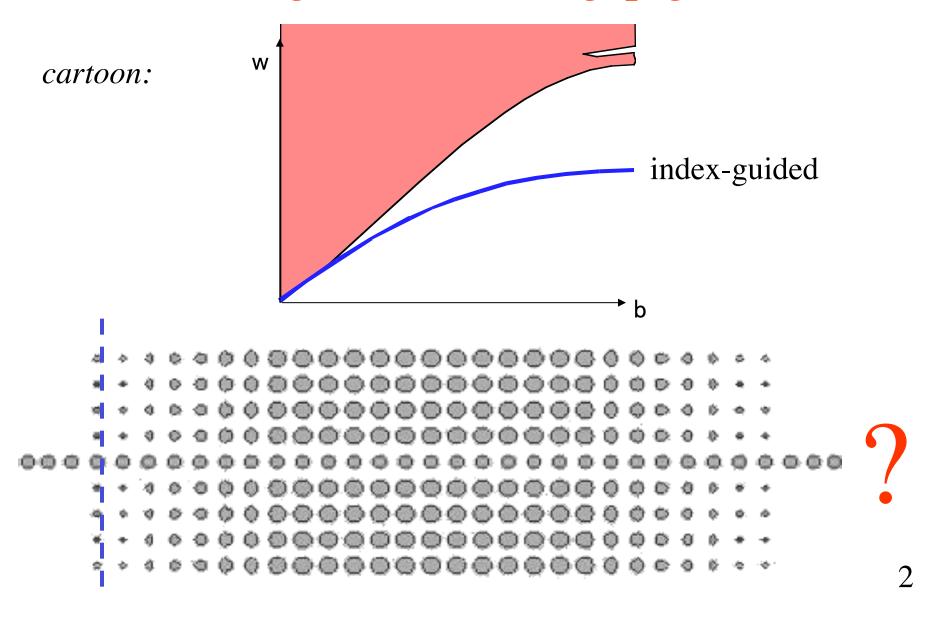
Must be guided (not part of a continuum).

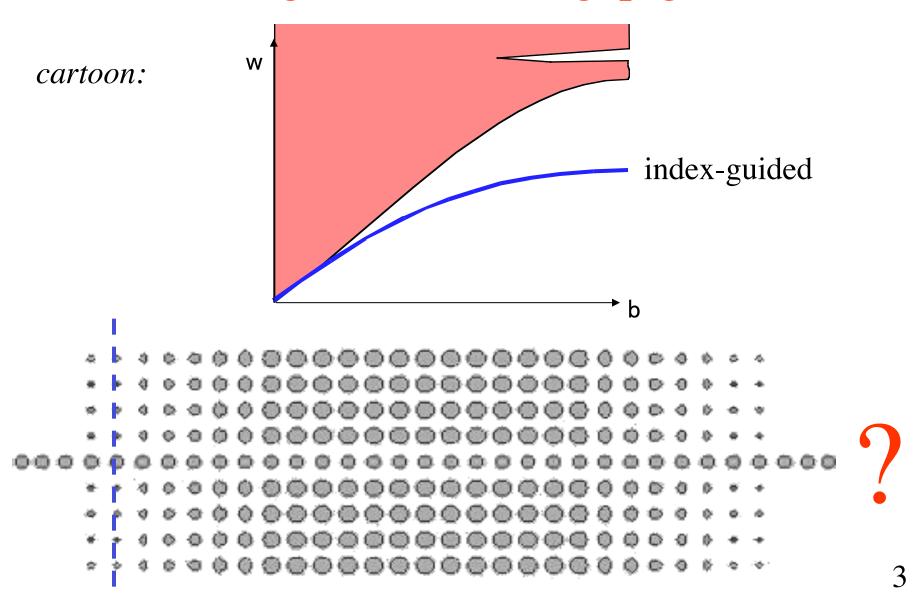
Intuitive!

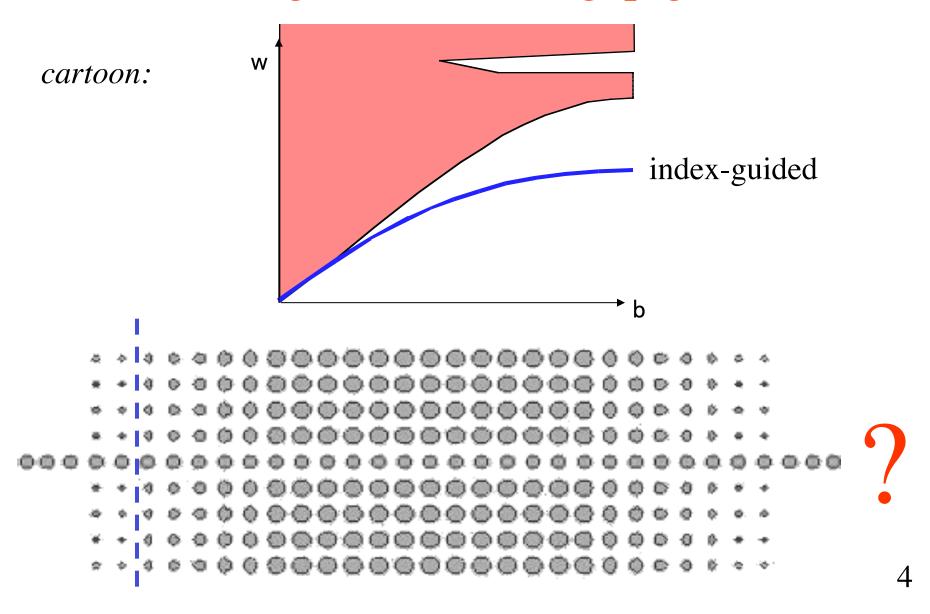
Easy to violate accidentally in photonic crystals.

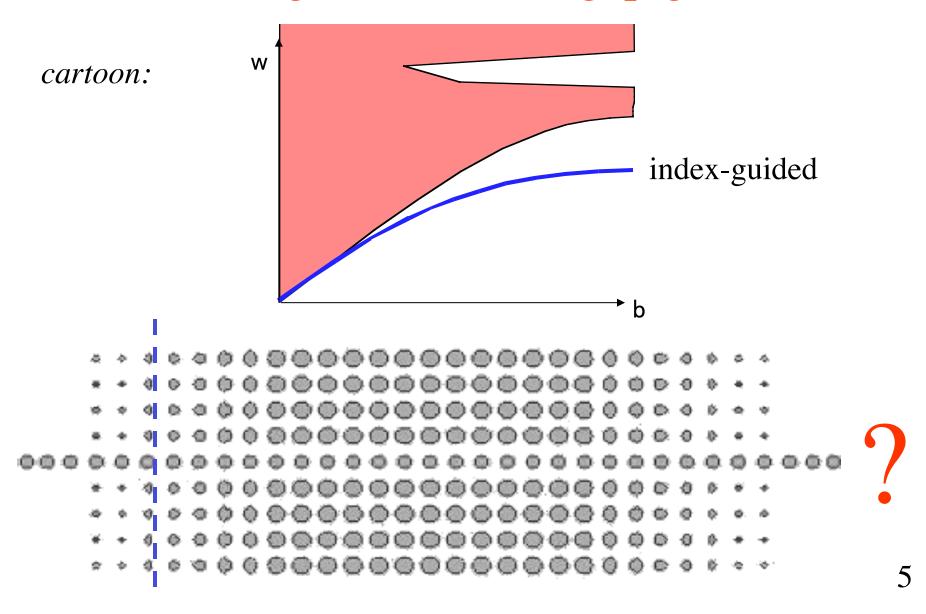


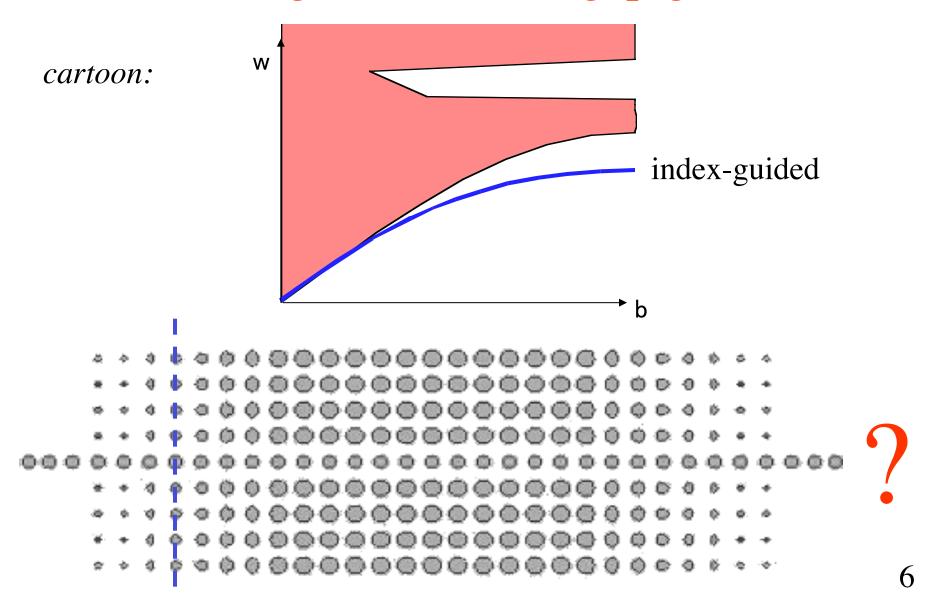


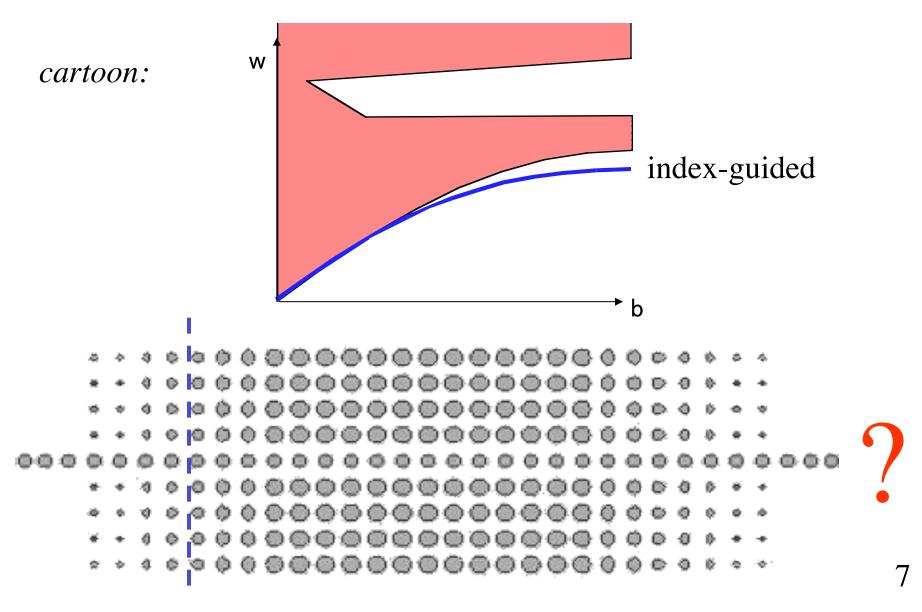


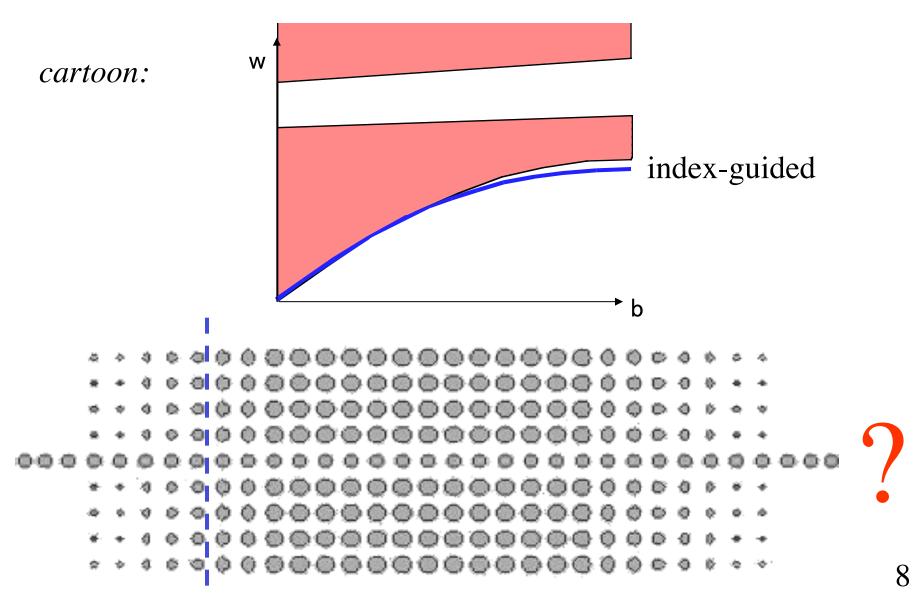


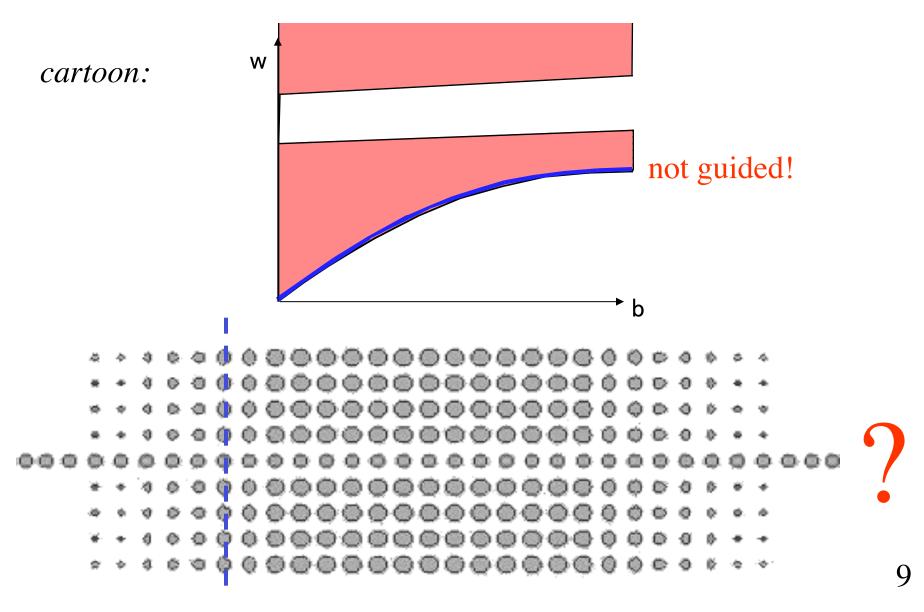


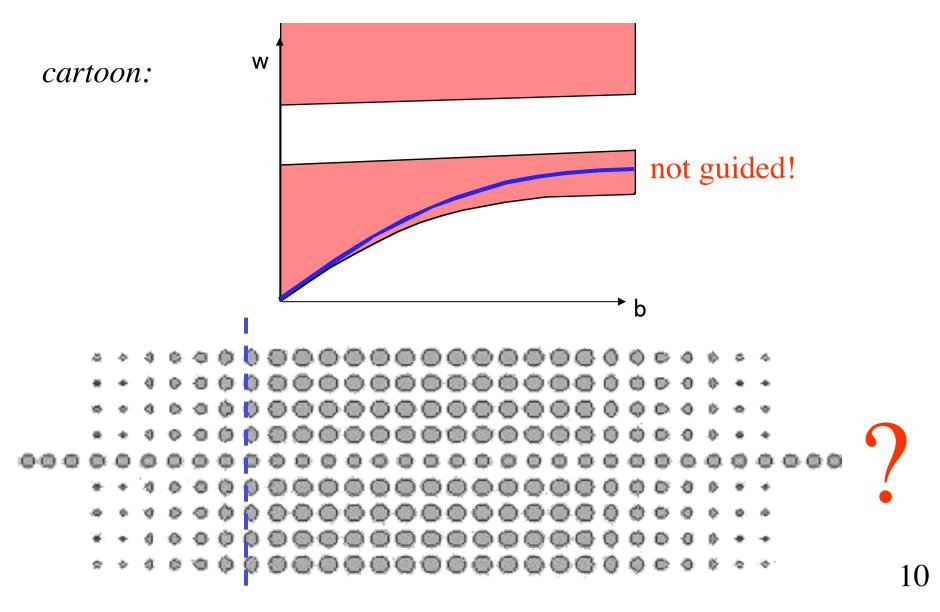


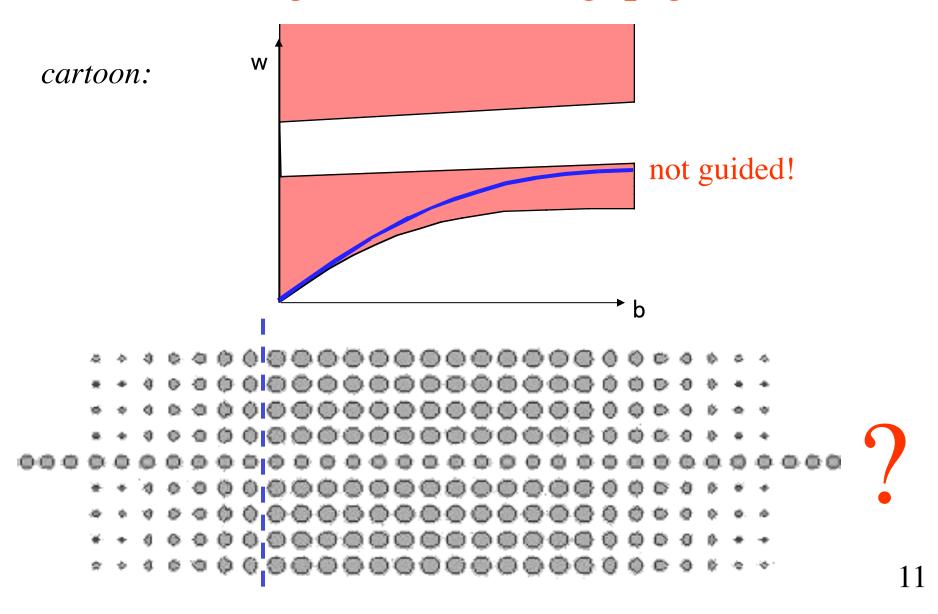


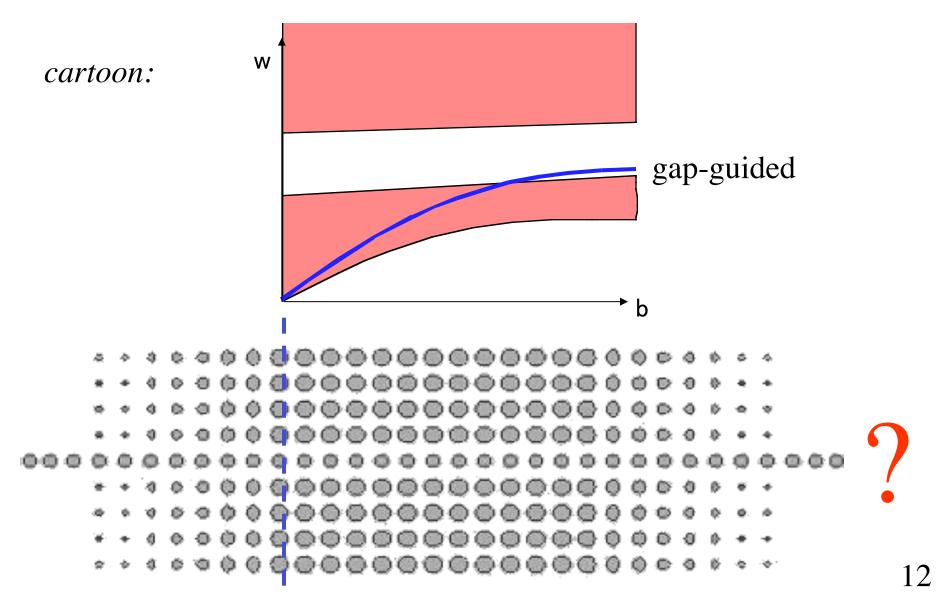


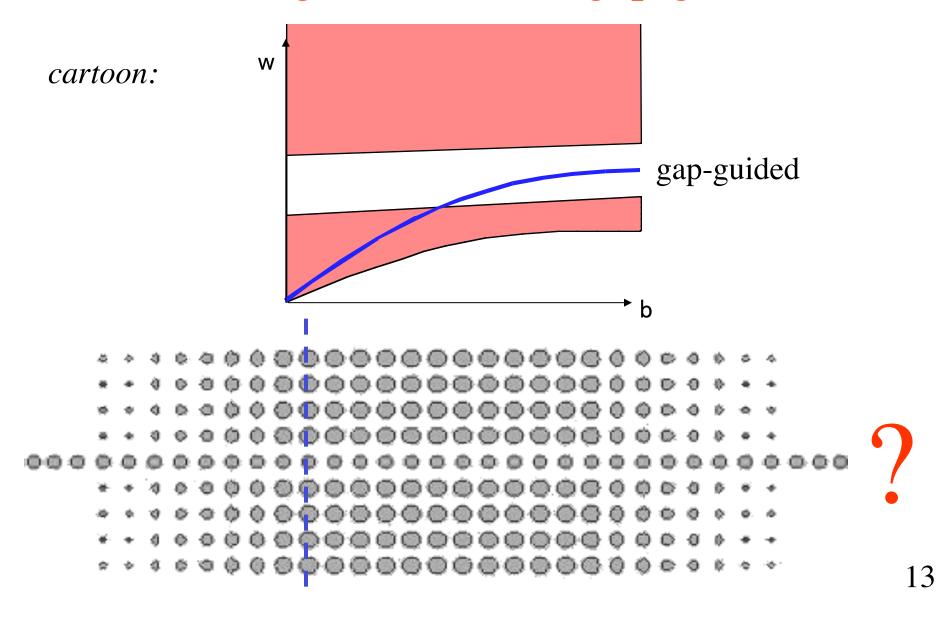




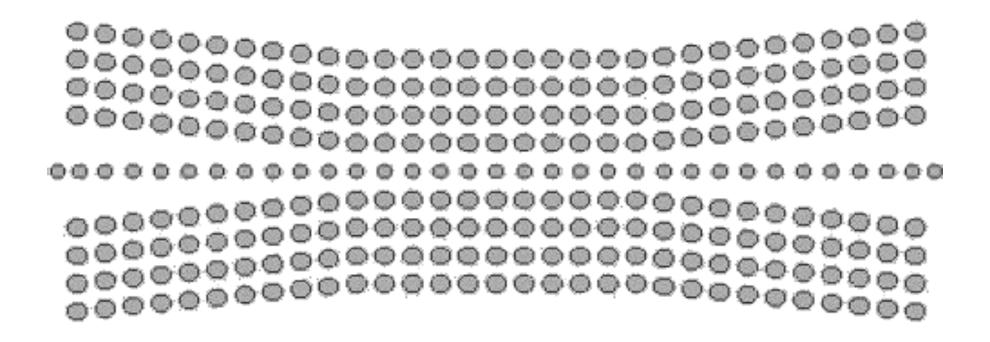




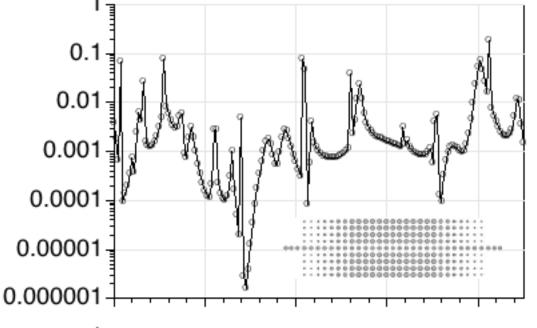




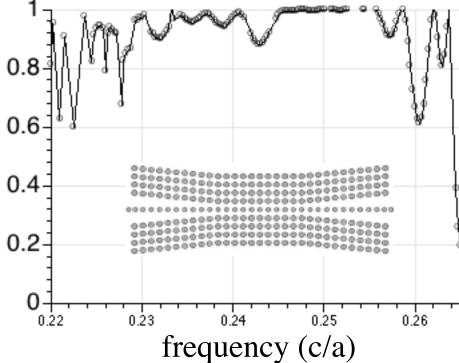
A Working Transition



continuum always lies below guided band ... just far away



Good Transmission:

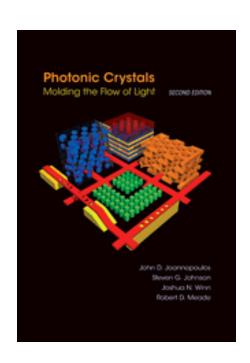


The story of photonic crystals:

Finding New Materials / Processes

→ Designing New Structures

Free Materials Online



Photonic Crystals book: jdj.mit.edu/book

Tutorial slides: jdj.mit.edu/photons/tutorial

Free electromagnetic simulation software (FDTD, mode solver, etc.) jdj.mit.edu/wiki