
Meep

MIT Electromagnetic Equation Propogation

(this is the old and somewhat obsolete LATEX manual)

—See http://ab-initio.mit.edu/meep/doc for the latest

documentation—

David Roundy, Mihai Ibanescu, Peter Bermel,
Steven G. Johnson, and Ardavan Farjadpour

August 21, 2006

2

Contents

1 Discretizing Maxwell’s equations 5
1.0.1 Frequency-dependent epsilon 5
1.0.2 Nonlinear dielectrics . 6
1.0.3 Anisotropic dielectrics . 6
1.0.4 Putting it all together . 6

1.1 The Yee lattice . 6
1.2 Maxwell’s equations in cylindrical coordinates 7

2 PML 9

3 Of polaritons and plasmons 11

4 Hints for writing finite difference time domain code 13

5 Tutorial 15
5.1 A simple 2D system. 15
5.2 A considerably more complicated 2D example. 17
5.3 Baby’s First Bandstructure . 21
5.4 Computing the band structure of an omniguide 22
5.5 Band structure of a polariton . 24
5.6 Energy conservation in cylindrical coordinates 25
5.7 Energy conservation in one dimension 26
5.8 Epsilon of a polaritonic material in one dimension 28
5.9 Dielectric function of a material with loss and gain 29
5.10 Nonlinear materials . 30

A GNU General Public License 33

3

4 CONTENTS

Chapter 1

Discretizing Maxwell’s
equations

Maxwell’s equations in the absence of sources are:

dH
dt

= −c∇×E (1.1)

dD
dt

= c∇×H (1.2)

If the material is a simple isotropic dielectric, we can simply write D = εE and
get on with our lives. Alas, all too often this is not the case! We need to be able
to deal with anisotropic dielectrics in which ε is a tensor quantity, nonlinear
materials in which ε is a function of E itself, and polaritonic and polaronic
materials in which ε is a function of frequency.

1.0.1 Frequency-dependent epsilon

In the case of a frequency-dependent ε, we write

D = ε∞E + P (1.3)

where P is the polarization as a function of time associated with the frequency
dependence of ε. Actually, in general there will be a set of polarizations, and
we’ll need a summation here. For simplicity we’ll only describe the case of a
single polarization in this section. The time dependence of a single polarization
is given by

d2P
dt2

+ γ
dP
dt

+ ω2
0P = ∆ε ω2

0E (1.4)

where γ, ω0 and ∆ε are material parameters. The energy lost due to the ab-
sorption by this resonance is simply

∆U = P
dE
dt

(1.5)

5

6 CHAPTER 1. DISCRETIZING MAXWELL’S EQUATIONS

In fact, if one sets ∆ε to be negative, we can model gain effectively in this way,
and in this case keeping track of the energy allows us to model a situation in
which there is a depleteable population inversion which is causing the gain—this
is the situation of gain with saturation.

1.0.2 Nonlinear dielectrics

In nonlinear dielectrics D is typically given by a cubic function of E.

D =
(
ε + ξ |E|2

)
E (1.6)

1.0.3 Anisotropic dielectrics

In anisotropic dielectrics the dielectric constant is a tensor quantity rather than
a scalar quantity. In this case we write (FIXME: how to do a tensor in latex?)

D = ¯̄εE (1.7)

E = ¯̄ε−1D (1.8)
(1.9)

1.0.4 Putting it all together

Putting it all together, we get a simplified time stepping of something like

dH
dt

= −c∇×E (1.10)

dE
dt

=
(
¯̄ε∞ + E · ¯̄ξ ·E

)−1
(

c∇×H−
∑

i

dPi

dt

)
(1.11)

d2Pi

dt2
+ γi

dPi

dt
+ ω0

2
i Pi = ∆εi ω0

2
i E (1.12)

1.1 The Yee lattice

In discretizing Maxwell’s equations, we need to put E and H on a grid. Because
we only need to calculate the curl of these quantities, we only need to know
them at limited locations–this gives us the accuracy of a fine grid while only
requiring as much data as a grid twice as coarse. This trick is called the Yee
lattice. Figure 1.1 shows the Yee lattice in cylindrical coordinates (with ẑ being
to the right). The gray squares indicate the locations at which ε is stored.

The Yee lattice has the property that all the derivatives needed for ∇×H
are known at the Yee lattice points of E. For example, if you look at the Hφ

location. dHφ

dt depends on dEr

dz and dEz

dr . This is great, because Er is known to
the right and left of Hφ, and Ez is known above and below Hφ.

1.2. MAXWELL’S EQUATIONS IN CYLINDRICAL COORDINATES 7

Figure 1.1: Yee lattice in cylindrical coordinates.

εE
r

E
φ

E
z

H
r

H
φ

H
z

εE
r

E
φ

E
z

H
r

H
φ

H
z

εE
r

E
φ

E
z

H
r

H
φ

H
z

εE
r

E
φ

E
z

H
r

H
φ

H
z

The same principle that the Yee lattice does with space, we also do with
time. E and H are known at different times, so that the time derivative of E is
known at a H time and vice versa.

1.2 Maxwell’s equations in cylindrical coordi-
nates

Here are Maxwell’s equations in cylindrical coordinates. We take the fields to
be of the form:

E(r, φ, z) = Em(r, z)eimφ

Without further ado:

1
c

dHr

dt
=

dEφ

dz
− im

r
Ez (1.13)

1
c

dHφ

dt
=

dEz

dr
− dEr

dz
(1.14)

1
c

dHz

dt
=

im

r
Er −

1
r

d(rEφ)
dr

(1.15)

8 CHAPTER 1. DISCRETIZING MAXWELL’S EQUATIONS

ε

c

dEr

dt
=

im

r
Hz −

dHφ

dz
(1.16)

ε

c

dEφ

dt
=

dHr

dz
− dHz

dr
(1.17)

ε

c

dEz

dt
=

1
r

d(rHφ)
dr

− im

r
Hr (1.18)

Chapter 2

PML

PML (Perfectly Matched Layers) is used to provide absorbing boundary condi-
tions in either the z or r direction. PML consists of a material in which some of
the field components are split into two fields, each of which has a conductivity
associated with it, which is responsible for the absorption of the PML.

PML is a sort of material that contains a set of conductivities σr, σφ and σz.
These conductivities are both E and H conductivities—yes, we have magnetic
monopoles moving around in our PML. ¨̂ Each σ causes absorption of radiation
in the direction it is named after. Thus σφ is small, and almost unnecesary, and
is only needed because of the curvature of the radial surface. The value of σφ

at a given radius is equal to

σφ(r) =
1
r

∫ r

0

σr(r)dr (2.1)

If we had a IDTD (Infinitesimal Difference Time Domain) code, PML would
be perfectly absorbing, regardless of the variation of σ with position. However,
since meep is a lowly FDTD code, we have to make sure that σ varies only
slowly from one grid point to the next. We do this by making σz (for example)
vary as z2, with a maximum value of σmax right in front of the boundary. At
the edge of the PML region is a metalic boundary condition. The optimal value
of σmax is determined by a tradeoff between reflection off the metallic boundary,
caused by too little a σmax, and reflection off the sigma itself, caused by too
large a σmax, which makes for a large variation of σ from one grid point to the
next.

9

10 CHAPTER 2. PML

Here are the field equations for a PML material:

dHrφ

dt
= −c

im

r
Ez − σφHrφ

dHrz

dt
= c

dEφ

dz
− σzHrz (2.2)

dHφz

dt
= −c

dEr

dz
− σzHφz

dHφr

dt
= c

dEz

dr
− σrHφr (2.3)

dHzr

dt
= −c

1
r

d(rEφ)
dr

− σrHzr
dHzφ

dt
= c

im

r
Er − σφHzφ (2.4)

ε
dErφ

dt
= c

im

r
Hz − σφErφ ε

dErz

dt
= −c

dHφ

dz
− σzErz (2.5)

ε
dEφz

dt
= c

dHr

dz
− σzEφz ε

dEφr

dt
= −c

dHz

dr
− σrEφr (2.6)

ε
dEzr

dt
= c

1
r

d(rHφ)
dr

− σrEzr ε
dEzφ

dt
= −c

im

r
Hr − σφEzφ (2.7)

Chapter 3

Of polaritons and plasmons

Most real materials, at least in some frequency range, have polarizations that are
not actually instantaneously proportional to the local electric field. We model
these polaritonic and plasmonic effects by introducing one or more additional
polarization fields, to be propogated along with the electric and magnetic field.
The polarization field, P, is a vector field which exists on the electric field Yee
lattice points.

The polarization field obeys a second order differential equation, which
means that we need to keep track of the polarization at two time steps, in
order to integrate it.

d2P
dt2

+ γ
dP
dt

+ ω2P = ∆ε ω2E (3.1)

To this, we need add one more term to maxwell’s equation for E:

c∇×H = ε∞
dE
dt

+
dP
dt

(3.2)

So far, the polarization is beautifully simple. However, we would love to be
able to put polaritonic materials into our PML regions, and unfortunately in
the PML region the electric field has been split into two components, so we need
to figure out which of the two components gets the contribution from dP

dt . The
obvious solution to this (well, maybe not exactly obvious, but it is the solution)
is to split the polarization field also into two components in the PML region,
just as we split the electric and magnetic fields.

The electric field propogation equations in PML then become:

ε
dErφ

dt
= c

im

r
Hz − σφErφ −

dPrφ

dt
(3.3)

ε
dEφz

dt
= c

dHr

dz
− σzEφz −

dPφz

dt
(3.4)

ε
dEzr

dt
= c

1
r

d(rHφ)
dr

− σrEzr −
dPzr

dt
(3.5)

11

12 CHAPTER 3. OF POLARITONS AND PLASMONS

ε
dErz

dt
= −c

dHφ

dz
− σzErz −

dPrz

dt
(3.6)

ε
dEφr

dt
= −c

dHz

dr
− σrEφr −

dPφr

dt
(3.7)

ε
dEzφ

dt
= −c

im

r
Hr − σφEzφ −

dPzφ

dt
(3.8)

Chapter 4

Hints for writing finite
difference time domain code

(Or Things I forgot many times, so I wrote down so maybe I won’t make the
same mistake again.)

There is just one rule to remember when writing time domain code, and
that is (as Lefteris has repeatedly told me) “Always know when each equation
is evaluated.” The trick, of course, lies in knowing how to apply this rule, and
remembering to actually apply it (and I think the latter is perhaps harder than
the former).

As an example, I’ll convert a PML polariton equation into a finite difference
equation taken from equation 3.8 of chapter 3.

ε
dEzφ

dt
= −c

im

r
Hr − σφEzφ −

dPzφ

dt

If we consider the E timesteps to be at times n, n + 1 etc., then this equation
needs to be evaluated at time n + 1

2 . This is no problem for most of the terms,
but it means that the σφEzφ term needs to be an average of its values at time
n and n + 1. In short (taking ∆t to be unity)...

ε(En+1
zφ − En

zφ) = −c
im

r
H

n+ 1
2

r − σφ(En+1
zφ + En

zφ)− (dPn+1
zφ − dPn

zφ)

Simplifying a tad gives

En+1
zφ − En

zφ =
1

ε + 1
2σφ

(
−c

im

r
H

n+ 1
2

r − σφEn
zφ − (dPn+1

zφ − dPn
zφ)
)

Basically, that is all there is to it. You now have the equation to determine
En+1

zφ from En
zφ, im

r H
n+ 1

2
r , dPn+1

zφ and dPn
zφ.

13

14CHAPTER 4. HINTS FOR WRITING FINITE DIFFERENCE TIME DOMAIN CODE

Chapter 5

Tutorial

5.1 A simple 2D system.

This example is intended to let you quickly get started using meep to run a
simple calculation. As such, it will include within it the complete code of the
example itself. Meep is a C++ library, so your control file is a small C++
program.

At the beginning of your control file, you have to include the “meep.h”
header and use the “meep” namespace...

#include <meep.hpp>
using namespace meep;

Next we create a function to define epsilon. This function accepts a “vec”
argument, and returns a double, which is the value of epsilon. For this example,
we use an index-guided waveguide with some air slits cut in it. You can choose
whatever units you like in which to define your structure. In this case we choose
the width of the waveguide as our unit, which is also equal to 1 micron.

const double half_cavity_width = 0.5*0.68, air_slit_width = 0.38,
grating_periodicity = 0.48,
half_waveguide_width = 1.0,
num_air_slits = 15.0,
high_dielectric = 12.0, low_dielectric = 11.5;

const double pml_thickness = 1.0;
const double x_center = 7.7 + pml_thickness;
const double y_center = 10.5 + pml_thickness;
double eps(const vec &rr) {
// Displacement from center of cavity is r:
const vec r = rr - vec(x_center, y_center);
// First the air slits:
double dx = fabs(r.x()) - half_cavity_width;
if (dx < num_air_slits*grating_periodicity && dx > 0.0) {

15

16 CHAPTER 5. TUTORIAL

Figure 5.1: Ez

while (dx > grating_periodicity) dx -= grating_periodicity;
if (dx < air_slit_width) return 1.0;

}
// Now check if the y value is within the waveguide:
if (fabs(r.y()) < half_waveguide_width) return high_dielectric;
// Otherwise we must be in the surrounding low dielectric:
return low_dielectric;

}

The main function should always start by creating an initialize object. This
object is responsible for setting up MPI if we are running on multiple processors,
and cleaning up properly when it is deleted (which means we are done).

int main(int argc, char *argv[]) {
initialize mpi(argc, argv);

The “s” structure defines the contents of the unit cell. It needs a volume, which
includes the size of the grid and the resolution, as well as the epsilon function we
defined earlier. Here we also choose to use PML absorbing boundary conditions
in all directions, since we are interested in the high Q mode in the cavity.

const double amicron = 10; // a micron is this many grid points.
const volume vol = voltwo(2*x_center, 2*y_center, amicron);
const symmetry S = mirror(Y, vol) + rotate2(Y, vol);
structure s(vol, eps, pml(pml_thickness), S);

To avoid clutter, we’ll create a directory to hold the output. The function
make_output_directory creates a directory based on the name of the example

5.2. A CONSIDERABLY MORE COMPLICATED 2D EXAMPLE. 17

program along with an extension. It also backs up the C++ source file if it can
find it. If the directory already exists, then it reuses it, unless the C++ control
file has changed, in which case it creates a new one.

const char *dirname = make_output_directory(__FILE__);
s.set_output_directory(dirname);

The structure only holds the epsilon. We will also need a “fields” object to
hold our electric and magnetic fields. We add a point source oriented in the Ez

direction, located in the center of our cavity.

fields f(&s);
const double wavelength = 1.72;
const double freq = 1.0/wavelength;
f.add_point_source(Hy, freq, 10.0, 0.0, 5.0, vec(x_center,y_center));

I’m not interested in seeing the source itself, so I’ll keep time stepping until the
current time is greater than the last time at which the source is running.

while (f.time() < f.last_source_time()) f.step();

Now we’ll wait a bit (to let the low-Q modes die off) and then take a snapshot
of the fields in HDF5 format.

while (f.time() < 200.0) f.step();
f.output_hdf5(Hx, f.total_volume());
f.output_hdf5(Hy, f.total_volume());
f.output_hdf5(Ez, f.total_volume());

}

And now we’re done, although you might wonder if we’ve done anything worth-
while, since all we got out of this was a picture...

5.2 A considerably more complicated 2D exam-
ple.

This example demonstrates a lot more of what you can do using meep. The
system is the same as in the previous example, but this time we will calculate
the quality factor of the cavity. Again, the entire control file will be included
here, but I’ll skip over sections that have already been explained.

#include <meep.hpp>
using namespace meep;

const double half_cavity_width = 0.5*0.68, air_slit_width = 0.38,
grating_periodicity = 0.48,
half_waveguide_width = 1.0,
num_air_slits = 15.0,

18 CHAPTER 5. TUTORIAL

high_dielectric = 12.0, low_dielectric = 11.5;
const double pml_thickness = 1.0;
const double x_center = 7.7 + pml_thickness;
const double y_center = 10.5 + pml_thickness;
double eps(const vec &rr) {
// Displacement from center of cavity is r:
const vec r = rr - vec(x_center, y_center);
// First the air slits:
double dx = fabs(r.x()) - half_cavity_width;
if (dx < num_air_slits*grating_periodicity && dx > 0.0) {
while (dx > grating_periodicity) dx -= grating_periodicity;
if (dx < air_slit_width) return 1.0;

}
// Now check if the y value is within the waveguide:
if (fabs(r.y()) < half_waveguide_width) return high_dielectric;
// Otherwise we must be in the surrounding low dielectric:
return low_dielectric;

}

This time we use the deal_with_ctrl_c(); function. This is a handy utility
function that is useful when running your meep code interactively. It traps the
SIGINT signal, so when you hit cntl-C, rather than simply exiting, the global
variable interrupt is incremented. If you really want to exit, just hit cntl-C
again, and when interrupt reaches 2, the program will exit.

int main(int argc, char *argv[]) {
initialize mpi(argc, argv);
deal_with_ctrl_c();
const double amicron = 10; // a micron is this many grid points.
const volume vol = voltwo(2*x_center, 2*y_center, amicron);
const symmetry S = mirror(Y, vol) + rotate2(Y, vol);
structure s(vol, eps, pml(pml_thickness), S);
const char *dirname = make_output_directory(__FILE__);
s.set_output_directory(dirname);
fields f(&s);
const double wavelength = 1.72;
const double freq = 1.0/wavelength;
f.add_point_source(Hy, freq, 5.0, 0.0, 5.0, vec(x_center,y_center));

We add an additional check below “&& interrupt!” so that when the user hits
cntl-C we exit the loop.

while (f.time() < f.last_source_time() && !interrupt) f.step();
f.output_hdf5(Ez, f.total_volume());
while (f.time() < 400.0 && !interrupt) f.step();

This time we’re going to run the simulation longer, so we would like to get
occasional informative messages. To do this we define a variable to hold the
next time we want to print a message.

5.2. A CONSIDERABLY MORE COMPLICATED 2D EXAMPLE. 19

double next_print_time = 500.0;

To calculate the Q of our cavity, we use a monitor point p. We also store the
value of Hy at our monitor point in a file named “hy” periodically. We create
this file using create_output_file, which creates and opens a file for writing
in the given output directory. This utility function works properly whether we
are running in parallel or not.

monitor_point *p = NULL;
FILE *myout = create_output_file(dirname, "hy");
while (f.time() <= 2000.0 && !interrupt) {
// Now we’ll start taking data!
f.step();

To get the monitor point data we use the get_new_point method of fields.
This ends up creating a linked list containing the values of the field at the
monitor point as a function of time, which we will later use to run harminv and
get the Q.

p = f.get_new_point(vec(x_center,y_center), p);

We use the get_component method to extract the (complex) fields from the
monitor point so we can print them. We use the master_fprintf function
because we only want to get one copy of the information even if we’re running
in parallel.

master_fprintf(myout, "%g\t%g\t%g\n", f.time(),
real(p->get_component(Hy)),
imag(p->get_component(Hy)));

Every time we reach the next_print_time we print out a copy of the Ez fields,
along with a little message indicating the time and the total energy (which
should be decaying at this point). The function master_printf is a utility
function that works basically like printf, except that when running in parallel
only one of the processors (the “master”) does the printing. You should use this
function rather than something like “if (my_rank()==0) printf(...)”, since
the latter can cause problems if the arguments to printf require synchronization
between the processes.

if (f.time() >= next_print_time) {
f.output_hdf5(Ez, f.total_volume());
master_printf("Energy is %g at time %g\n",

f.total_energy(), f.time());
next_print_time += 500.0;

}
}

Files which are opened with create_output_file need to be closed with master_fclose,
which does the Right Thing when running in parallel.

20 CHAPTER 5. TUTORIAL

Figure 5.2: Contents of “freqs” file

0.651297 7.26245e-07 -896801 0.00821062 -0.000426369

master_fclose(myout);

Having collected all the monitor point data, we now want to run harminv1 on it
to find the Q of our resonant cavity. The harminv method gives us the complex
amplitudes, the frequencies and the decay rates. The decay rate is given in the
same units as the frequency, so you could choose to view it as the imaginary
part of the frequency if you like.

This harminv step is the real reason for using the ctrl-C trick, since if while
running this example we get impatient and decide we have enough data we can
just hit ctrl-C and get the results using what data we have. This means you
can just set the code to run for an excessively long time without risking losing
everything if you lose patience.

In case you’re wondering about the “\begin{verbatim}”, it’s there so I can
easily include the output in this manual (see Figure 5.2).

complex<double> *amp, *freqs;
int num;

FILE *myfreqs = create_output_file(dirname, "freqs");
master_fprintf(myfreqs, "\\begin{verbatim}\n");
master_printf("Harminving Hy...\n");
interrupt = 0; // Harminv even if we were interrupted.
p->harminv(Hy, &, &freqs, &num, 0.8*freq, 1.2*freq, 5);
for (int i=0;i<num;i++) {
master_fprintf(myfreqs, "%g\t%g\t%g\t%g\t%g\n",

real(freqs[i]), imag(freqs[i]),
-real(freqs[i])/imag(freqs[i]),
real(amp[i]), imag(amp[i]));

}
master_fprintf(myfreqs, "%cend{verbatim}\n", ’\\’);
master_fclose(myfreqs);
delete[] dirname;

}

1If you don’t know what harminv is, I’m not going to explain it here, so you may as well
ask me in person (or even better, ask Steven...

5.3. BABY’S FIRST BANDSTRUCTURE 21

5.3 Baby’s First Bandstructure

In this example we calculate the lowest four TE modes of a simple hollow metal-
lic waveguide of radius one.

int main(int argc, char *argv[]) {
initialize mpi(argc, argv);
FILE *ban = master_fopen("bands", "w");
structure s(volcyl(1.0, 0.0, rad), eps);
for (int m=0;m<3;m++) {
for (double k=0.0; k<= 1.01; k += 0.25) {
master_printf("Working on k of %g and m = %d with a=%d...\n",

k, m, rad);
fields f(&s, m);
f.use_bloch(k);

There are a few tricks you should know before you decide to go about
calculating a band structure. One of the biggest problems in calculating a
band structure in a time domain code is that of exciting all the modes you
are interested in. Meep makes this easy with a couple of “fields” methods,
initialize_with_n_te, and initialize_with_n_tm. These initialize the field
with the n lowest TE and TM modes respectively.

f.initialize_with_n_te(4);

The band structure code itself begins with a call to prepare_for_bands,
which allocates space to store the field data, which is later used for the band
structure calculation. Its third argument is the maximum frequency you are
interested in.

double fmax = 1.0, qmin = 200;
f.prepare_for_bands(0, ttot, fmax, qmin);
for (int t=0;t<ttot;t++) {

The second band structure function is record_bands, which just copies the
fields into the already allocated arrays for future use.

f.record_bands();
f.step();

}

Finally, the band structure is actually computed and output by the method
output_bands. The key thing to know about output_bands is that its last
argument should be something like twice the number of modes which have a
frequency below your maximum. Rounding this number up slows the code down
considerably, but can sometimes fix problems where harminv (which is used
internally) doesn’t find the modes correctly. Usually, however, when harminv
fails it means you are misunderstanding something (for example, fmax may be
less than the lowest frequency mode).

22 CHAPTER 5. TUTORIAL

f.output_bands(ban, "band", 35);
}

}
master_fclose(ban);

}

5.4 Computing the band structure of an om-
niguide

In this section we give as an example of a more complicated band structure, a
computation of the band structure of an omniguide. The output of this program
is shown in Figure 5.4.

const int num_layers = 3;
const double rcore = 3.0;

double guided_eps(const vec &v) {
double rr = v.r() - rcore;
if (rr > num_layers + 0.3) return 1.0; // outside the entire waveguide
if (rr < 0.0) return 1.0; // vacuum in the core
while (rr > 1.0) rr -= 1.0; // calculate (r - rcore) % 1
if (rr < 0.3) return 21.16; // in the high dielectric
return 1.6*1.6; // in the low dielectric

}
double vacuum_eps(const vec &v) { return 1.0; }

For this band structure example, we use the grace object to create our plot.

grace g("bands", dirname);
g.set_range(0.0, 0.35, 0.0, 0.35);

Since the m = 0 modes are pure TE or TM, it makes sense to calculate
the two polarizations separately. Not only does this give us more interesting
output, but it doesn’t cost us any time, to speak of, and actually makes the
band structure much easier to converge. However, for brevity, I won’t include
here in the manual computation of the TM modes, but will skip straight to the
TE modes.

for (int m=0;m<2 && !interrupt;m++) {
g.new_set();
char m_string[30];
if (m) snprintf(m_string, 30, "m = %d", m);
else snprintf(m_string, 30, "m = 0, TE");
g.set_legend(m_string);
for (double k=0.0;k<0.351 && !interrupt;k+=0.05) {

5.4. COMPUTING THE BAND STRUCTURE OF AN OMNIGUIDE 23

Figure 5.3: Omniguide band structure.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

m = 0, TM
m = 0, TE
m = 1

In order to populate the modes that we are interested in, we first populate the
modes of an empty waveguide (whose modes are known), and then adiabatically
transform from that waveguide into our omniguide structure.

printf("Working on k of %g and %s with a=%d...\n", k, m_string, a);
fields f(&vac, m);
f.use_bloch(k);
f.verbose(1);
f.phase_in_material(&s, 1000);

We initialize the fields with both TE and TM modes, and then phase in the
epsilon as usual, and then do the actual phasing in of the structure.

f.initialize_with_n_te(9);
if (m) f.initialize_with_n_tm(9);
while (f.is_phasing() && !interrupt) f.step();

Again, the band structure code is pretty normal, with the only real difference
being that in this case we really want to have specify a large Qmin, to help
meep to distinguish between real modes and spurious noise. Note that we are
using metallic boundary conditions, so all physical modes should have infinite
lifetime.

f.prepare_for_bands(veccyl(4.801,0.0), ttot, .35, 300, 0.0);
f.prepare_for_bands(veccyl(1.801,0.0), ttot, .35, 300, 0.0);
f.prepare_for_bands(veccyl(2.801,0.0), ttot, .35, 300, 0.0);
const double stoptime = f.time() + ttot;
while (f.time() < stoptime && !interrupt) {

24 CHAPTER 5. TUTORIAL

Figure 5.4: Polariton band structure.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

f.record_bands();
f.step();

}

Finally, we just need to compute and output the bands. We are careful here to
keep in mind that when m > 0, there are twice as many bands, since there are
both TM and TE modes.

f.grace_bands(&g, m?80:40);
}

The band is actually printed to disk only when the grace object is destroyed,
which in this case happens just before the program exits.

5.5 Band structure of a polariton

Here we compute and plot the band structure of a polariton material. We look
at a simple metallic waveguide filled with a polaritonic material. The material
we look at has an epsilon of 13.4 and a longitudinal phonon frequency of 0.7
and a transverse phonon frequency of 0.4.

double eps(const vec &) { return 13.4; }
double one(const vec &) { return 1; }

To create the polaritonic material, we add the polarizability to the material
after we have created it.

5.6. ENERGY CONSERVATION IN CYLINDRICAL COORDINATES 25

double freq = 0.4, gamma = 0.01, delta_eps = 27.63;
s.add_polarizability(one, freq, gamma, delta_eps);

for (k=0.0;k<4.01 && !interrupt;k+=.5) {
master_printf("Working on k of %g and m = %d...\n", k, m);
fields f(&s, m);
f.use_bloch(k);

Now we excite the first TE mode (we are only looking at m = 0 here), and
remember to excite along with it the phonon with which it couples.

f.initialize_with_nth_te(1);
f.initialize_polarizations();

Finally, we compute the band structure as usual.

f.prepare_for_bands(veccyl(0.501,0.0), ttot, .7+.15*k/3.0, 50, 1e-4);
f.prepare_for_bands(veccyl(0.301,0.0), ttot, .7+.15*k/3.0, 50, 1e-4);

while (f.time() < ttot && !interrupt) {
f.record_bands();
f.step();

}
f.grace_bands(&g, 16);

The final output of this routine (as calculated using the “plot” program) is
shown in Figure 5.5.

5.6 Energy conservation in cylindrical coordi-
nates

In this example, we compute the total energy over time for a polaritonic ma-
terial in cylindrical coordinates. Eventually I figure I may extend this example
to demonstrate energy/flux conservation using PML. That would definitely be
more impressive.

For our example polaritonic material, we’ll use an ε(0) of 13.4. We will put
the polaritons in just one quarter of our system to add a little extra excitement.

double eps(const vec &) { return 13.4; }
double one(const vec &p) { return (p.z() > 15.0)?1:0; }

We use a long and skinny system so as to exaggerate any errors that may crop
up at small r.

structure s(volcyl(1.0,20.0, a), eps);

We use several point sources, to cover a broad frequency range, just for the heck
of it.

26 CHAPTER 5. TUTORIAL

Figure 5.5: Energy vs. Time.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

f.add_point_source(Ep, 0.6 , 1.8, 0.0, 8.0, veccyl(0.5,2.0));
f.add_point_source(Ep, 0.4 , 1.8, 0.0, 8.0, veccyl(0.5,2.0));
f.add_point_source(Ep, 0.33, 1.8, 0.0, 8.0, veccyl(0.5,2.0));

We plot the total energy, the electromagnetic energy and the “thermodynamic
energy” which is the energy that is either stored in the polarization, or has been
converted into heat, or (if we had a saturating gain system) perhaps is stored
in a population inversion.

g.output_out_of_order(0, f.time(), f.total_energy());
g.output_out_of_order(1, f.time(), f.field_energy_in_box(f.v.surroundings()));
g.output_out_of_order(2, f.time(), f.thermo_energy_in_box(f.v.surroundings()));

5.7 Energy conservation in one dimension

In this example, we compute the total energy over time for a polaritonic material
in one dimension to verify that it is indeed conserved. This also demonstrates
how to use a 1D system.

For our example polaritonic material, we’ll use an ε(0) of 13.4. We will put
the polaritons in just one quarter of our system to add a little extra excitement.

double eps(const vec &) { return 13.4; }
double one(const vec &p) { return (p.z() > 15.0)?1:0; }

We create a 1D system by making the volume with the “volone” function, and
making sure any vecs we use are one dimensional.

structure s(volone(20.0, a), eps);

5.7. ENERGY CONSERVATION IN ONE DIMENSION 27

Figure 5.6: Energy vs. Time.

0 100 200 300 400 500 600
0

1

2

3

4

The polarizability is added as usual... in this case we use a very sharp resonance,
which means that our energy will only be very slowly absorbed.

s.add_polarizability(one, 0.25, 0.0001, 3.0);
fields f(&s);
grace g("energy", dirname);

We use several point sources, to cover a broad frequency range, just for the heck
of it.

f.add_point_source(Ex, 0.6 , 1.8, 0.0, 8.0, vec(2.0));
f.add_point_source(Ex, 0.4 , 1.8, 0.0, 8.0, vec(2.0));
f.add_point_source(Ex, 0.33, 1.8, 0.0, 8.0, vec(2.0));

We plot the total energy, the electromagnetic energy and the “thermodynamic
energy” which is the energy that is either stored in the polarization, or has been
converted into heat, or (if we had a saturating gain system) perhaps is stored
in a population inversion.

g.output_out_of_order(0, f.time(), f.total_energy() - ezero);
g.output_out_of_order(1, f.time(),

f.electric_energy_in_box(f.v.surroundings())
+ f.magnetic_energy_in_box(f.v.surroundings()));

g.output_out_of_order(2, f.time(),
f.thermo_energy_in_box(f.v.surroundings()) - ezero);

28 CHAPTER 5. TUTORIAL

Figure 5.7: Epsilon of a polaritonic material.

0.3 0.35 0.4 0.45 0.5

-500

0

500

1000

1500

2000

ε1
ε2
analytic ε1
analytic ε2

5.8 Epsilon of a polaritonic material in one di-
mension

In this example, we compute epsilon as a function of frequency for a simple
polaritonic material. This example is done in one dimension for speed purposes.

One thing to be aware of when using polaritonic materials, is that generally
you will be needing a rather higher grid resolution than you may be used to in
order to properly model the material. Here I am using an a of 40.

Altough in this calculation the polaritonic material will not be within the
PML, it is all right to have polaritonic material within PML regions.

s.add_polarizability(one, 0.4, 0.01, 27.63);

We use a single rather high frequency (and very broad) point source, to cover a
broad frequency range.

f.add_point_source(Ex, 0.9, 0.8, 0.0, 8.0, vec(sourceloc));

We use a couple of monitor points to determine epsilon.

monitor_point *left = NULL, *right = NULL, *middle = NULL;

The monitor points are located one grid spacing from one another. The get_new_point
method appends the fields at a given time to a monitor point linked list.

left = f.get_new_point(vec(sourceloc+1.0/a), left);
middle = f.get_new_point(vec(sourceloc+2.0/a), middle);
right = f.get_new_point(vec(sourceloc+3.0/a), right);

When the time stepping is over, we take a fourier transform of the fields at the
two monitor points.

5.9. DIELECTRIC FUNCTION OF A MATERIAL WITH LOSS AND GAIN29

Figure 5.8: Dielectric function of a material with loss and gain.

0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

3

ε1
ε2
analytic ε1
analytic ε2

left->fourier_transform(Ex, &al, &freqs, &numl, 0.301, 0.5, 300);

Finally we calculate epsilon from the second derivative of the field using

−k2Hz(ω) = ∇2Hz(ω) = ∇2

complex<double> *epsilon = new complex<double>[numl];
for (int i=0;i<numl;i++) {
complex<double> ksqr = -(ar[i]+al[i]-2.0*am[i])*a*a/am[i];
epsilon[i] = ksqr/freqs[i]/freqs[i]/(2*pi*2*pi);

}
for (int i=0;i<numl;i++)
g.output_point(real(freqs[i]), real(epsilon[i]));

g.new_set();
g.set_legend("\\x\\e\\s2\\N");
for (int i=0;i<numl;i++)
g.output_point(real(freqs[i]), imag(epsilon[i]));

5.9 Dielectric function of a material with loss
and gain

In this section, we demonstrate a better way to calculate the dielectric function,
and illustrate it by computing the dielectric function of a material with a normal
lossy resonance as well as a gain line. Gain in the PML is a bad idea, so we
restrict the polarizabilities to exist only in the middle of the system (which is
surrounded by PML).

s.add_polarizability(one_in_middle, 0.195, 0.03, 0.25*.25/.195);
s.add_polarizability(one_in_middle, 0.25, 0.03,-0.25);

30 CHAPTER 5. TUTORIAL

For sources, we use a series of broad point sources covering the frequency
range of interest.

f.add_point_source(Ep, 0.3, 0.8, 0.0, 8.0, veccyl(rmax*0.5,sourceloc));

The calculation proceeds as usual, except that we now keep track of a set of
monitor points that will allow us to take a laplacian of the Hz field component.
We choose m = 0, so we won’t have to deal with the φ derivative.

left = f.get_new_point(veccyl(r_look , z_look - d), left);
middle = f.get_new_point(veccyl(r_look , z_look), middle);
top = f.get_new_point(veccyl(r_look + d, z_look), top);
bottom = f.get_new_point(veccyl(r_look - d, z_look), bottom);
right = f.get_new_point(veccyl(r_look , z_look + d), right);

We fourier transform Hz at each point:

left->fourier_transform(Hz, &al, &freqs, &numl, minfreq, maxfreq, numfreqs);

Finally, we calculate the laplacian of Hz(ω), which is equal to −k2Hz(ω),
from which we extract epsilon.

for (int i=0;i<numl;i++) {
complex<double> ksqr = -(ar[i]+al[i]-2.0*am[i]

+ at[i]*0.5*(1+(r_look+d)/r_look) +
ab[i]*0.5*(1+(r_look-d)/r_look) - 2.0*am[i]

- m*m*1.0*am[i]/r_look/r_look*a*a
)*a*a/am[i];

epsilon[i] = ksqr/freqs[i]/freqs[i]/(2*pi*2*pi);
}

I’ve left out the bulk of this example from the manual itself, since it is
pretty much the same as the previous examples. Among other features, we use
the grace functions to plot the result, which can be seen in Figure 5.9.

5.10 Nonlinear materials

FIXME: Add a nice discussion of nonlinear materials here...
In this example, we will use a CW source and compute the amplitude of the

field at a given position and time as a function of the source amplitude. The
result will be linear as long as the material remains in the linear regime. Once
we have departed from the linear regime, we get more complicated behavior.
Yes, this is a stupid example...

The system is shown in Figure 5.10. It is a 2D metallic waveguide with
vacuum ε of 2.25. In the center of the cell is a small region that is linear which
contains the source, and the rest of the waveguide contains a nonlinear material.
Both ends of the waveguide have PML absorbing boundary conditions.

5.10. NONLINEAR MATERIALS 31

Figure 5.9: Field vs. source amplitude with nonlinear material

Figure 5.10: Field vs. source amplitude with nonlinear material

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

const double alpha_value = 0.07;
double alpha(const vec &v) {
if (fabs(v.x() - xmax/2.0) < .51) return 0.0;
return alpha_value;

}

The set chi3 method is used to set the chi3 coefficient.

s.set_chi3(alpha);

We use a CW source at a frequency of 0.4, which gives single-mode behavior
when the amplitude is small. Also note that we use real fields, since complex
fields are incorrect for nonlinear materials.

continuous_src_time my_source(0.4, 0.8);
for (double amp = 0.05; amp <= 1.01 && !interrupt; amp += 0.01) {
fields f(&s, m);
f.use_real_fields();
f.add_point_source(Ez, my_source, vec(xmax*0.5,ymax*0.5), amp);

Time stepping, etc, is done as usual. We monitor the field at one end of the
cell, which gives Figure 5.10, which show the field versus source amplitude.

32 CHAPTER 5. TUTORIAL

Appendix A

GNU General Public
License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the soft-
ware, or if you modify it.

33

34 APPENDIX A. GNU GENERAL PUBLIC LICENSE

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this

35

License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

36 APPENDIX A. GNU GENERAL PUBLIC LICENSE

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by law

37

if you do not accept this License. Therefore, by modifying or distribut-
ing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original li-
censor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the re-
cipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistri-
bution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of soft-
ware distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is will-
ing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

38 APPENDIX A. GNU GENERAL PUBLIC LICENSE

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

39

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

	Discretizing Maxwell's equations
	Frequency-dependent epsilon
	Nonlinear dielectrics
	Anisotropic dielectrics
	Putting it all together

	The Yee lattice
	Maxwell's equations in cylindrical coordinates

	PML
	Of polaritons and plasmons
	Hints for writing finite difference time domain code
	Tutorial
	A simple 2D system.
	A considerably more complicated 2D example.
	Baby's First Bandstructure
	Computing the band structure of an omniguide
	Band structure of a polariton
	Energy conservation in cylindrical coordinates
	Energy conservation in one dimension
	Epsilon of a polaritonic material in one dimension
	Dielectric function of a material with loss and gain
	Nonlinear materials

	GNU General Public License

