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Sharp Bending of On-Chip Silicon Bragg Cladding
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Abstract—A novel on-chip Bragg cladding waveguide is de-
signed and fabricated using conventional CMOS techniques.
This optical waveguide has a low refractive index core sur-
rounded by high index-contrast cladding bilayers. Polysilicon
(n = 3.5) and silicon nitride (n = 2.0) are used for high
index-contrast Bragg layers, where index difference is as high
as 1.5. Our simulation shows that sharp bending in low in-
dex core materials can be achieved, which is not possible us-
ing index guiding mechanism. Within our approach, various on-
chip applications are expected such as optical integration, high
power transmission, biosensor/microelectromechanical system and
so on.

Index Terms—Bragg layers, low index core, optical waveguide.

I. INTRODUCTION

INTEREST in achieving light guiding and sharp bending
in low-index materials (including air) has increased, with

new devices that use a photonic band gap (PBG) [1]–[4] or
Bragg reflection [5]–[9] to confine light. Specific examples in-
clude two-dimentional (2-D) photonic crystal fibers [10]–[12]
and anti-resonant reflecting optical waveguides (ARROW) [13].
Another example, the omniguide fiber, uses high index-contrast
concentric dielectric layers to enhance the mode confinement in
a relatively simple structure [14]–[18]. It is difficult to fabricate
this structure on a silicon chip. However, the same principle
of using one-dimentional (1-D) omnidirectional mirrors can be
applied to an alternative structure that can be fabricated with
current microelectronics technology processes (CMOS com-
patible processes). Toward that end, an on-chip silicon-based
Bragg cladded waveguide is designed with low refractive index
material for the core, and stratified high index-contrast dielec-
tric layers as the cladding [19]. Due to the high index contrast
of these materials with each other, they have a large PBG, and
may act as omnidirectional reflectors, which means light of all
incident angles and polarizations is reflected within a specific
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range of wavelengths (e.g., near 1550 nm). In contrast with an
index-guided waveguide, it is possible to confine light to a low
index core (possibly air). The high index contrast allows the
cladding thickness to be less than 2 µm, which is much thinner
than the conventional silica optical bench waveguide. This struc-
ture can also be used to efficiently transmit light about bends
much tighter than that found in low index contrast index-guided
waveguides.

II. DESIGN AND SIMULATION FOR SHARP BENDING

Our proposed structure is briefly outlined in Fig. 1(a). The
core is surrounded with Bragg cladding layers, which consists
of polysilicon and silicon nitride. The core is uniformly wrapped
with PBG layers except bottom corners. This structure is real-
ized by conventional planar CMOS techniques. The thickness
of Bragg cladding layers is obtained simply from λc /4n rule,
where λc is 1.55 µm. Therefore, the target thickness of polysili-
con and silicon nitride is 110 and 194 nm, respectively. For core
material, silicon dioxide (SiO2) is employed as an example. For
bends, the inner radii are varied from 2 to 40 µm. Waveguide
bending is an important issue, which needs to be addressed if we
want to utilize the light propagation in low index core materials.
It has been shown that a constant cross section waveguide with a
bend maps onto a 1-D quantum problem with a potential well. In
1-D, an arbitrarily weak attractive potential will always create a
bound state. It is easy to show that a resonance will occur when a
half-integer number of wavelengths are contained within the po-
tential well. In principle, this leads to perfect transmission. Our
system is based on the straight on-chip Bragg cladding waveg-
uide, but with a smooth 90 ◦ bend, as illustrated in Fig. 1(b).
The transmission is calculated by comparing the total integrat-
ing Poynting flux going into the bend is compared to the total
coming out, for a Gaussian pulse centered around ω = 0.203
(2πc/a) and kz = 0.191 (2π/a), with a core of 10a × 10a (a is
the periodicity of Bragg cladding layers), which is meant to cor-
respond to the parameters for the TM11 mode. The calculation
was done for inner turning radii of 8a, 15a, and 22a. The results
indicated a transmission of 91.6% for the smallest inner radius,
corresponding to a value of 2.4 µm for a = 0.3 µm, and 92.9%
for the largest inner radius, corresponding to a value of 6.6 µm.
As illustrated in Fig. 2(a) and (b), despite our attempt to choose
a k-vector corresponding to a resonant mode in the waveguide,
it is found that the transmission as a function of frequency is
relatively flat.
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Fig. 1. (a) Bragg cladding waveguide schematic: Bragg cladding lay-
ers surrounds low index core. Bragg layers consist of polysilicon (n =
3.5) and silicon nitride n = 2.0). (b) Cutaway view of 3-D bend, which
locally has an on-chip Bragg cladding channel waveguide cross section
everywhere.

III. FABRICATION

In contrast to lithographic approach, where photonic struc-
tures are fabricated by fine lithography such as e-beam lithog-
raphy and successive dry etching, a simple and conventional
CMOS technique is employed in our case. The fabrication
scheme is outlined in Fig. 3. Polysilicon and nitride were chosen
as high index contrast materials. Both materials were deposited
using low pressure chemical–vapor deposition (LPCVD) pro-
cess. Polysilicon was deposited using 150-sccm SiH4 at 625 ◦C
under 200-mtorr pressure with 98-Å/min deposition rate. Sili-
con nitride was deposited using 250-sccm SiH2Cl2 and 25-sccm
NH3 at 775 ◦C under 200-mtorr pressure with 23-Å/min depo-
sition rate. Oxide was deposited using 150-sccm SiH4 at 400 ◦C

Fig. 2. (a) Transmission spectrum around a 90◦ bend for a Bragg cladding
channel waveguide structure with an inner radius of 8a. (b) Distribution of
electric field power for light being guided around a 90◦ bend. The source is the
narrow array of bulges in the lower right. Virtually no power is observed to leak
from the waveguide suggesting that most losses about the bend are a result of
reflection.

under 200 mtorr. By employing LPCVD technique, a good step
coverage is expected due to its long diffusion length, in addi-
tion to good film quality, which is because of its high reaction
temperature as compared to plasma-enhanced CVD (PECVD),
where the reaction temperature is around 400 ◦C or other phys-
ical vapor deposition techniques such as sputtering, where the
substrate temperature is as low as room temperature. The thick-
ness for polysilicon and silicon nitride are 110 and 194 nm, re-
spectively. The deposition was done using SVG/Thermco 7000
series. Using the above conditions and parameters, six pairs of
polysilicon/silicon nitride Bragg layers were deposited as well
as a 4–6-µm-thick oxide core [(Fig. 4(a) and (b)]. The oxide is
densified at 800 ◦C in N2 ambient for 4 h to obtain stoichiometric
oxide, and chemomechanical polishing (CMP) was applied to
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Fig. 3. Waveguide fabrication schematic. All steps are done by conventional CMOS process. (a) Deposit thick oxide (LTO) on Bragg under-cladding layers and
densify it. (b) Lithography and dry etch patterning. (c) Deposit top cladding layers using LPCVD process (not to scale).

Fig. 4. SEM and TEM images of Bragg cladding waveguide. (left) SEM
images of PBG waveguide. (a) 1600× . (b) 4500× . (right) TEM images for
top corner and bottom corner. (c) 5000× . (d) 8000× .

planarize the top surface in order to suppress the scattering loss.
A Strasbaugh Harmony 6EC was used for CMP. Then, the ox-
ide core and Bragg undercladding are patterned and dry-etched
by Applied Materials AME5300 using 17.9-sccm C2 F6 and
12.1-sccm CH3F with 1800 W source RF. Then, six pairs
of polysilicon/silicon nitride bi-layers are deposited as top-
cladding. TEM images for fabricated Bragg waveguides are
shown in Fig. 4(c) and (d). It is shown that a good step coverage
and uniformity are achieved by this approach.

IV. WAVEGUIDE MEASUREMENT RESULTS

For waveguide loss measurement, conventional cutback
method was employed since these waveguides are multimoded.
The Fabry–Perot resonance method, which is considered to be
a better approach for accurate measurement, is not available in
this case. Due to waveguides’ larger core sizes, it can be ex-
pected that the alignment between the waveguide and the fiber
is relatively easy. Propagation loss of waveguide (αT ) is defined

as

αT =
10
d

log10

(
Pin

Pout

)

where Pin and Pout are the input and output powers, respec-
tively. d is the length of the waveguide (the chip length). Since
Pin cannot be measured directly, several lengths were chosen
to obtain propagation losses. To suppress scattering losses at
the input and output facets and achieve good coupling between
the fiber and the waveguide, both facets were polished using
a Buehler ECOMET3. The measurement shows that 3 dB/cm
loss and 2 dB/90◦ turn for a 4× 20 µm Bragg cladding waveg-
uide have been achieved. Larger losses are observed for thinner
waveguides. The observed higher loss than simulation can be at-
tributed to fabrication imperfections such as sidewall roughness,
which was introduced during dry-etching step.

V. DISCUSSION AND SUMMARY

In this paper, a SiO2 core is used as the example of on-
chip Bragg cladded waveguide structure. However, fabrication
need not be restricted to SiO2—a hollow core could also be
fabricated with a slight change in the procedure. This so-called
“core freedom” would give rise to multiple applications, for
example, transmission of high intensity beams (e.g., for a CO2

laser) through a hollow core without absorption or nonlinearity
or to trap light—or even modify the rate of emission—from
an optically active material. It also has unique group-velocity
dispersion characteristics, which can be modified with changes
to the core. Finally, the on-chip Bragg cladded waveguide has
the advantage of relatively small dimensions, including a tight
turning radius compared to low-contrast index-guided fibers.

VI. CONCLUSION

A new low-index core optical waveguide with sharp bend-
ing, whose fabrication is fully compatible to the current CMOS
technology, is developed. Si and Si3N4 are deposited using
LPCVD method and high quality Bragg cladding layers are
realized. Light guiding and sharp bending in the low-index core
is demonstrated. A thin PBG cladding, made possible by the
large index contrast between the Si and Si3N4 layers, indicates
the advantage of this device over traditional silica optical bench
waveguides.
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